Finite Product Spaces
Given n seminormed spaces Xi with seminorms qi we can define the product space as
with vector addition defined as
and scalar multiplication defined as
- .
We define a new function q
for example as
- .
which is a seminorm on X. The function q is a norm if and only if all qi are norms.
More generally, for each real p≥1 we have the seminorm:
For each p this defines the same topological space.
A straightforward argument involving elementary linear algebra shows that the only finite-dimensional seminormed spaces are those arising as the product space of a normed space and a space with trivial seminorm. Consequently, many of the more interesting examples and applications of seminormed spaces occur for infinite-dimensional vector spaces.
Read more about this topic: Normed Vector Space
Famous quotes containing the words finite, product and/or spaces:
“For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.”
—Ralph Waldo Emerson (18031882)
“[As teenager], the trauma of near-misses and almost- consequences usually brings us to our senses. We finally come down someplace between our parents safety advice, which underestimates our ability, and our own unreasonable disregard for safety, which is our childlike wish for invulnerability. Our definition of acceptable risk becomes a product of our own experience.”
—Roger Gould (20th century)
“We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.”
—Henry David Thoreau (18171862)