Linear Maps and Dual Spaces
The most important maps between two normed vector spaces are the continuous linear maps. Together with these maps, normed vector spaces form a category.
The norm is a continuous function on its vector space. All linear maps between finite dimensional vector spaces are also continuous.
An isometry between two normed vector spaces is a linear map f which preserves the norm (meaning ‖f(v)‖ = ‖v‖ for all vectors v). Isometries are always continuous and injective. A surjective isometry between the normed vector spaces V and W is called an isometric isomorphism, and V and W are called isometrically isomorphic. Isometrically isomorphic normed vector spaces are identical for all practical purposes.
When speaking of normed vector spaces, we augment the notion of dual space to take the norm into account. The dual V ' of a normed vector space V is the space of all continuous linear maps from V to the base field (the complexes or the reals) — such linear maps are called "functionals". The norm of a functional φ is defined as the supremum of |φ(v)| where v ranges over all unit vectors (i.e. vectors of norm 1) in V. This turns V ' into a normed vector space. An important theorem about continuous linear functionals on normed vector spaces is the Hahn–Banach theorem.
Read more about this topic: Normed Vector Space
Famous quotes containing the words maps, dual and/or spaces:
“And now good morrow to our waking souls,
Which watch not one another out of fear;
For love all love of other sights controls,
And makes one little room an everywhere.
Let sea-discoverers to new worlds have gone,
Let maps to other, worlds on worlds have shown,
Let us possess one world; each hath one, and is one.”
—John Donne (15721631)
“Thee for my recitative,
Thee in the driving storm even as now, the snow, the winter-day
declining,
Thee in thy panoply, thy measurd dual throbbing and thy beat
convulsive,
Thy black cylindric body, golden brass and silvery steel,”
—Walt Whitman (18191892)
“Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.”
—Jean Baudrillard (b. 1929)