Geology
Olympus Mons is the result of many thousands of highly fluid, basaltic lava flows that poured from volcanic vents over a long period of time. (The Hawaiian Islands exemplify similar shield volcanoes on a smaller scale – see Mauna Kea.) The extraordinary size of Olympus Mons is likely because Mars lacks mobile tectonic plates. Unlike on Earth, the crust of Mars remains fixed over a stationary hotspot, and a volcano can continue to discharge lava until it reaches an enormous height.
The flanks of Olympus Mons are made up of innumerable lava flows and lava channels. Many of the flows have levees along their margins (pictured). Levees are parallel ridges formed at the edges of lava flows. The cooler, outer margins of the flow solidify, leaving a central trough of molten, flowing lava. Partially collapsed lava tubes are visible as chains of pit craters, and broad lava fans formed by lava emerging from intact, subsurface tubes are also common. In places along the volcano's base, lava flows can be seen spilling out into the surrounding plains, forming broad aprons, and burying the basal escarpment. (Note: Lava flows refer to both actively flowing lava and the solidified landforms they produce. The meaning here is the latter, since Mars has no active lava flows at the present time.) Crater counts from high resolution images taken by the Mars Express orbiter in 2004 indicate that lava flows on the northwestern flank of Olympus Mons range in age from 115 million years old (Mya) to only 2 Mya. These ages are very recent in geological terms, suggesting that the mountain may still be volcanically active, though in a very quiescent and episodic fashion.
The caldera complex at the peak of the volcano is made of at least six overlapping calderas and caldera segments (pictured). Calderas are formed by roof collapse following depletion and withdrawal of the subsurface magma chamber after an eruption. Each caldera thus represents a separate pulse of volcanic activity on the mountain. The largest and oldest caldera segment appears to have formed as a single, large lava lake. The size of a caldera is a reflection of the size of the underlying magma chamber. Using geometric relationships of caldera dimensions from laboratory models, scientists have estimated that the magma chamber associated with the largest caldera on Olympus Mons lies at a depth of about 32 km (105,000 ft) below the caldera floor. Crater size-frequency distributions on the caldera floors indicate the calderas range in age from 350 Mya to about 150 Mya. All probably formed within 100 million years of each other.
Olympus Mons is asymmetrical structurally as well as topographically. The longer, more shallow northwestern flank displays extensional features, such as large slumps and normal faults. In contrast, the volcano's steeper southeastern side has features indicating compression. They include step-like terraces in the volcano's mid-flank region (interpreted as thrust faults) and a number of wrinkle ridges located at the basal escarpment. Why opposite sides of the mountain should show different styles of deformation is puzzling. The answer may lie in understanding how large shield volcanoes grow laterally and on how variations within the substrate of the volcano affect the final shape of the mountain.
Large shield volcanoes grow not only by adding material to their flanks as erupted lava, but also by spreading laterally at their bases. As a volcano grows in size, the stress field underneath the volcano changes from compressional to extensional. A subterranean rift may develop at the base of the volcano, causing the underlying crust to spread apart. If the volcano rests on sediments containing mechanically weak layers (e.g., beds of water-saturated clay), detachment zones (decollements) may develop in the weak layers. The extensional stresses in the detachment zones can produce giant landslides and normal faults on the volcano's flanks, leading to the formation of a basal escarpment. Further from the volcano, these detachment zones can express themselves as a succession of overlapping, gravity driven thrust faults. This mechanism has long been cited as an explanation of the Olympus Mons aureole deposits (discussed below).
Olympus Mons lies at the edge of the Tharsis bulge, a vast volcanic plateau that is very ancient. The formation of Tharsis was likely complete by the end of the Noachian Period. At the time Olympus Mons began to form in Hesperian times, the volcano was located on a shallow slope that descended from the high in Tharsis into the northern lowland basins. Over time, these basins would have received large volumes of sediment eroded from Tharsis and the southern highlands. The sediments likely contained abundant Noachian-aged phyllosilicates (clays) formed during a early period on Mars when surface water was abundant. The sediments would be thickest in the northwest where basin depth was greatest. As the volcano grew through lateral spreading, low-friction detachment zones preferentially developed in the thicker sediment layers to the northeast, creating the basal escarpment and widespread lobes of aureole material (Lycus Sulci). Spreading also occurred to the southeast; however, it was more constrained in that direction by the Tharsis rise, which presented a higher-friction zone at the volcano's base. Friction was higher in that direction because the sediments were thinner and probably consisted of coarser grained material resistant to sliding. The competent and rugged basement rocks of Tharsis acted as an additional source of friction. Thus, basal spreading of Olympus Mons was inhibited in the southeast direction, accounting for the structural and topographic asymmetry of the mountain. Numerical models of particle dynamics involving lateral differences in friction along the base of Olympus Mons have been shown to reproduce the volcano's present shape and asymmetry fairly well.
The detachment along the weak layers was likely aided by the presence of high-pressure water in the sediment pore spaces. This possibility has interesting astrobiological implications. If water-saturated zones still exist in sediments under the volcano, they would likely have been kept warm by a high geothermal gradient and residual heat from the volcano's magma chamber. Potential springs or seeps around the volcano would offer exciting possibilities for detecting microbial life.
Read more about this topic: Olympus Mons