Over Finite Fields
Orthogonal groups can also be defined over finite fields Fq, where q is a power of a prime p. When defined over such fields, they come in two types in even dimension: O+(2n, q) and O−(2n, q); and one type in odd dimension: O(2n+1, q).
If V is the vector space on which the orthogonal group G acts, it can be written as a direct orthogonal sum as follows:
where Li are hyperbolic lines and W contains no singular vectors. If W = 0, then G is of plus type. If W =
In the special case where n = 1, is a dihedral group of order .
We have the following formulas for the order of O(n, q), when the characteristic is greater than two:
If −1 is a square in Fq
If −1 is a non-square in Fq
Read more about this topic: Orthogonal Group
Famous quotes containing the words finite and/or fields:
“For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.”
—Ralph Waldo Emerson (18031882)
“Is America a land of God where saints abide for ever? Where golden fields spread fair and broad, where flows the crystal river? Certainly not flush with saints, and a good thing, too, for the saints sent buzzing into mans ken now are but poor- mouthed ecclesiastical film stars and cliché-shouting publicity agents.
Their little knowledge bringing them nearer to their ignorance,
Ignorance bringing them nearer to death,
But nearness to death no nearer to God.”
—Sean OCasey (18841964)