Applications
Because of the volatility and extreme toxicity of its oxide, osmium is rarely used in its pure state, and is instead often alloyed with other metals. Those alloys are utilized in high-wear applications. Osmium alloys such as osmiridium are very hard and, along with other platinum group metals, are used in the tips of fountain pens, instrument pivots, and electrical contacts, as they can resist wear from frequent operation. They were also used for the tips of phonograph styli during the late 78 rpm and early "LP" and "45" record era, circa 1945 to 1955. Although very durable compared to steel and chromium needle points, osmium alloy tips wore out far more rapidly than competing but costlier sapphire and diamond tips and were discontinued.
Osmium tetroxide has been used in fingerprint detection and in staining fatty tissue for optical and electron microscopy. As a strong oxidant, it cross-links lipids mainly by reacting with unsaturated carbon-carbon bonds, and thereby both fixes biological membranes in place in tissue samples and simultaneously stains them. Because osmium atoms are extremely electron dense, osmium staining greatly enhances image contrast in transmission electron microscopy (TEM) studies of biological materials. Those carbon materials have otherwise very weak TEM contrast (see image). Another osmium compound, osmium ferricyanide (OsFeCN), exhibits similar fixing and staining action.
An alloy of 90% platinum and 10% osmium is used in surgical implants such as pacemakers and replacement of pulmonary valves.
The tetroxide and a related compound, potassium osmate, are important oxidants for chemical synthesis, despite being very poisonous. For the Sharpless asymmetric dihydroxylation, which uses osmate for the conversion of a double bond into a vicinal diol, Karl Barry Sharpless won the Nobel Prize in Chemistry in 2001. Apparently, OsO4 is very expensive for this use, so KMnO4 is often used instead, even though the yields are less for this cheaper chemical reagent.
In 1898 an Austrian chemist, Auer von Welsbach, developed the Oslamp with a filament made of osmium, which he introduced commercially in 1902. After only a few years, osmium was replaced by the more stable metal tungsten. Tungsten has the highest melting point of any metal, and using it in light bulbs increases the luminous efficacy and life of incandescent lamps.
The light bulb manufacturer Osram (founded in 1906 when three German companies, Auer-Gesellschaft, AEG and Siemens & Halske, combined their lamp production facilities) derived its name from the elements of osmium and Wolfram (the latter is German for tungsten).
Like palladium, powdered osmium effectively absorbs hydrogen atoms. This could make osmium a potential candidate for a metal hydride battery electrode. However, osmium is expensive and would react with potassium hydroxide, the most common battery electrolyte.
Osmium has high reflectivity in the ultraviolet range of the electromagnetic spectrum; for example, at 600 Å osmium has a reflectivity twice that of gold. This high reflectivity is desirable in space-based UV spectrometers which have reduced mirror sizes due to space limitations. Osmium-coated mirrors were flown in several space missions aboard the Space Shuttle, but it soon became clear that the oxygen radicals in the low earth orbit are abundant enough to significantly deteriorate the osmium layer.
The only known clinical use of osmium appears to be for synovectomy in arthritic patients in Scandinavia. It involves the local administration of osmium tetroxide (OsO4) which is usually considered to be a highly toxic compound. The lack of reports of long term side effects suggest that osmium itself can be biocompatible, although clearly this might be dependent on the exact nature of the osmium compound administered. In 2011, osmium(VI) and osmium(II) compounds were reported to show anticancer activity in vivo, it indicated a promising future for using osmium compounds as anticancer drugs.
Read more about this topic: Osmium