Outer Space - Environment

Environment

Outer space is the closest natural approximation to a perfect vacuum. It has effectively no friction, allowing stars, planets and moons to move freely along their ideal orbits. However, even the deep vacuum of intergalactic space is not devoid of matter, as it contains a few hydrogen atoms per cubic meter. By comparison, the air we breathe contains about 1025 molecules per cubic meter. The sparse density of matter in outer space means that electromagnetic radiation can travel great distances without being scattered: the mean free path of a photon in intergalactic space is about 1023 km, or 10 billion light years. In spite of this, extinction, which is the absorption and scattering of photons by dust and gas, is an important factor in galactic and intergalactic astronomy.

Stars, planets and moons retain their atmospheres by gravitational attraction. Atmospheres have no clearly delineated boundary: the density of atmospheric gas gradually decreases with distance from the object until it becomes indistinguishable from the surrounding environment. The Earth's atmospheric pressure drops to about 3.2 × 10−2 Pa at 100 kilometres (62 miles) of altitude, compared to 100 kPA for the International Union of Pure and Applied Chemistry (IUPAC) definition of standard pressure. Beyond this altitude, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar wind. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather.

On the Earth, temperature is defined in terms of the kinetic activity of the surrounding atmosphere. However the temperature of the vacuum cannot be measured in this way. Instead, the temperature is determined by measurement of the radiation. All of the observable Universe is filled with photons that were created during the Big Bang, which is known as the cosmic microwave background radiation (CMB). (There is quite likely a correspondingly large number of neutrinos called the cosmic neutrino background.) The current black body temperature of the background radiation is about 3 K (−270 °C; −454 °F). Some regions of outer space can contain highly energetic particles that have a much higher temperature than the CMB, such as the corona of the Sun where temperatures can range over 1.2–2.6 MK.

Outside of a protective atmosphere and magnetic field, there are few obstacles to the passage through space of energetic subatomic particles known as cosmic rays. These particles have energies ranging from about 106 eV up to an extreme 1020 eV of ultra-high-energy cosmic rays. The peak flux of cosmic rays occurs at energies of about 109 eV, with approximately 87% protons, 12% helium nuclei and 1% heavier nuclei. In the high energy range, the flux of electrons is only about 1% of that of protons. Cosmic rays can damage electronic components and pose a health threat to space travelers.

Read more about this topic:  Outer Space

Famous quotes containing the word environment:

    In a land which is fully settled, most men must accept their local environment or try to change it by political means; only the exceptionally gifted or adventurous can leave to seek his fortune elsewhere. In America, on the other hand, to move on and make a fresh start somewhere else is still the normal reaction to dissatisfaction and failure.
    —W.H. (Wystan Hugh)

    People between twenty and forty are not sympathetic. The child has the capacity to do but it can’t know. It only knows when it is no longer able to do—after forty. Between twenty and forty the will of the child to do gets stronger, more dangerous, but it has not begun to learn to know yet. Since his capacity to do is forced into channels of evil through environment and pressures, man is strong before he is moral. The world’s anguish is caused by people between twenty and forty.
    William Faulkner (1897–1962)