Exploration and Applications
For the majority of human history, space was explored by remote observation; initially with the unaided eye and then with the telescope. Prior to the advent of reliable rocket technology, the closest that humans had come to reaching outer space was through the use of balloon flights. In 1935, the U.S. Explorer II manned balloon flight had reached an altitude of 22 km (14 mi). This was greatly exceeded in 1942 when the third launch of the German A-4 rocket climbed to an altitude of about 80 km (50 mi). In 1957, the unmanned satellite Sputnik 1 was launched by a Russian R-7 rocket, achieving Earth orbit at an altitude of 215–939 kilometres (134–583 mi). This was followed by the first human spaceflight in 1961, when Yuri Gagarin was sent into orbit on Vostok 1. The first humans to escape Earth orbit were Frank Borman, Jim Lovell and William Anders in 1968 on board Apollo 8, which achieved lunar orbit and reached a maximum distance of 377,349 km (234,474 mi) from the Earth.
The first spacecraft to reach escape velocity, was the Soviet Luna 1, which performed a fly-by of the Moon in 1959. In 1961, Venera 1 became the first planetary probe. It revealed the presence of the solar wind and performed the first fly-by of the planet Venus, although contact was lost before reaching Venus. The first successful planetary mission was the Mariner 2 fly-by of Venus in 1962. The first spacecraft to perform a fly-by of Mars was Mariner 4, which reached the planet in 1964. Since that time, unmanned spacecraft have successfully examined each of the Solar System's planets, as well their moons and many minor planets and comets. They remain a fundamental tool for the exploration of outer space, as well as observation of the Earth.
The absence of air makes outer space (and the surface of the Moon) ideal locations for astronomy at all wavelengths of the electromagnetic spectrum, as evidenced by the spectacular pictures sent back by the Hubble Space Telescope, allowing light from about 13.7 billion years ago—almost to the time of the Big Bang—to be observed. However, not every location in space is ideal for a telescope. The interplanetary zodiacal dust emits a diffuse near-infrared radiation that can mask the emission of faint sources such as extrasolar planets. Moving an infrared telescope out past the dust will increase the effectiveness of the instrument. Likewise, a site like the Daedalus crater on the far side of the Moon could shield a radio telescope from the radio frequency interference that hampers Earth-based observations.
The deep vacuum of space could make it an attractive environment for certain industrial processes, such as those that require ultraclean surfaces.
Read more about this topic: Outer Space
Famous quotes containing the words exploration and and/or exploration:
“The future author is one who discovers that language, the exploration and manipulation of the resources of language, will serve him in winning through to his way.”
—Thornton Wilder (18971975)
“Typography tended to alter language from a means of perception and exploration to a portable commodity.”
—Marshall McLuhan (19111980)