Parabola - Generalizations

Generalizations

In algebraic geometry, the parabola is generalized by the rational normal curves, which have coordinates the standard parabola is the case and the case is known as the twisted cubic. A further generalization is given by the Veronese variety, when there is more than one input variable.

In the theory of quadratic forms, the parabola is the graph of the quadratic form (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form (or scalings) and the hyperbolic paraboloid is the graph of the indefinite quadratic form Generalizations to more variables yield further such objects.

The curves for other values of p are traditionally referred to as the higher parabolas, and were originally treated implicitly, in the form for p and q both positive integers, in which form they are seen to be algebraic curves. These correspond to the explicit formula for a positive fractional power of x. Negative fractional powers correspond to the implicit equation and are traditionally referred to as higher hyperbolas. Analytically, x can also be raised to an irrational power (for positive values of x); the analytic properties are analogous to when x is raised to rational powers, but the resulting curve is no longer algebraic, and cannot be analyzed via algebraic geometry.

Read more about this topic:  Parabola