Parametric Surface

A parametric surface is a surface in the Euclidean space R3 which is defined by a parametric equation with two parameters Parametric representation is the most general way to specify a surface. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.

Read more about Parametric Surface:  Examples, Local Differential Geometry, See Also

Famous quotes containing the word surface:

    We say justly that the weak person is flat, for, like all flat substances, he does not stand in the direction of his strength, that is, on his edge, but affords a convenient surface to put upon. He slides all the way through life.... But the brave man is a perfect sphere, which cannot fall on its flat side and is equally strong every way.
    Henry David Thoreau (1817–1862)