Permutations - Permutations in Group Theory

Permutations in Group Theory

In group theory, the term permutation of a set means a bijective map, or bijection, from that set onto itself. The set of all permutations of any given set S forms a group, with composition of maps as product and the identity as neutral element. This is the symmetric group of S. Up to isomorphism, this symmetric group only depends on the cardinality of the set, so the nature of elements of S is irrelevant for the structure of the group. Symmetric groups have been studied most in the case of a finite sets, in which case one can assume without loss of generality that S={1,2,...,n} for some natural number n, which defines the symmetric group of degree n, written Sn.

Any subgroup of a symmetric group is called a permutation group. In fact by Cayley's theorem any group is isomorphic to some permutation group, and every finite group to a subgroup of some finite symmetric group. However, permutation groups have more structure than abstract groups, allowing for instance to define the cycle type of an element of a permutation group; different realizations of a group as a permutation group need not be equivalent for this additional structure. For instance S3 is naturally a permutation group, in which any transposition has cycle type (2,1), but the proof of Cayley's theorem realizes S3 as a subgroup of S6 (namely the permutations of the 6 elements of S3 itself), in which permutation group transpositions get cycle type (2,2,2). So in spite of Cayley's theorem, the study of permutation groups differs from the study of abstract groups.

Read more about this topic:  Permutations

Famous quotes containing the words permutations, group and/or theory:

    The new shopping malls make possible the synthesis of all consumer activities, not least of which are shopping, flirting with objects, idle wandering, and all the permutations of these.
    Jean Baudrillard (b. 1929)

    Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.
    Mary Barnett Gilson (1877–?)

    If my theory of relativity is proven correct, Germany will claim me as a German and France will declare that I am a citizen of the world. Should my theory prove untrue, France will say that I am a German and Germany will declare that I am a Jew.
    Albert Einstein (1879–1955)