Photon - Wave–particle Duality and Uncertainty Principles

Wave–particle Duality and Uncertainty Principles

See also: Wave–particle duality, Squeezed coherent state, and Uncertainty principle

Photons, like all quantum objects, exhibit both wave-like and particle-like properties. Their dual wave–particle nature can be difficult to visualize. The photon displays clearly wave-like phenomena such as diffraction and interference on the length scale of its wavelength. For example, a single photon passing through a double-slit experiment lands on the screen exhibiting interference phenomena but only if no measure was made on the actual slit being run across. To account for the particle interpretation that phenomenon is called probability distribution but behaves according to Maxwell's equations. However, experiments confirm that the photon is not a short pulse of electromagnetic radiation; it does not spread out as it propagates, nor does it divide when it encounters a beam splitter. Rather, the photon seems to be a point-like particle since it is absorbed or emitted as a whole by arbitrarily small systems, systems much smaller than its wavelength, such as an atomic nucleus (≈10−15 m across) or even the point-like electron. Nevertheless, the photon is not a point-like particle whose trajectory is shaped probabilistically by the electromagnetic field, as conceived by Einstein and others; that hypothesis was also refuted by the photon-correlation experiments cited above. According to our present understanding, the electromagnetic field itself is produced by photons, which in turn result from a local gauge symmetry and the laws of quantum field theory (see the Second quantization and Gauge boson sections below).

A key element of quantum mechanics is Heisenberg's uncertainty principle, which forbids the simultaneous measurement of the position and momentum of a particle along the same direction. Remarkably, the uncertainty principle for charged, material particles requires the quantization of light into photons, and even the frequency dependence of the photon's energy and momentum. An elegant illustration is Heisenberg's thought experiment for locating an electron with an ideal microscope. The position of the electron can be determined to within the resolving power of the microscope, which is given by a formula from classical optics


\Delta x \sim \frac{\lambda}{\sin \theta}

where is the aperture angle of the microscope. Thus, the position uncertainty can be made arbitrarily small by reducing the wavelength λ. The momentum of the electron is uncertain, since it received a "kick" from the light scattering from it into the microscope. If light were not quantized into photons, the uncertainty could be made arbitrarily small by reducing the light's intensity. In that case, since the wavelength and intensity of light can be varied independently, one could simultaneously determine the position and momentum to arbitrarily high accuracy, violating the uncertainty principle. By contrast, Einstein's formula for photon momentum preserves the uncertainty principle; since the photon is scattered anywhere within the aperture, the uncertainty of momentum transferred equals


\Delta p \sim p_{\text{photon}} \sin\theta=\frac{h}{\lambda} \sin\theta

giving the product, which is Heisenberg's uncertainty principle. Thus, the entire world is quantized; both matter and fields must obey a consistent set of quantum laws, if either one is to be quantized.

The analogous uncertainty principle for photons forbids the simultaneous measurement of the number of photons (see Fock state and the Second quantization section below) in an electromagnetic wave and the phase of that wave


\Delta n \Delta \phi > 1

See coherent state and squeezed coherent state for more details.

Both photons and material particles such as electrons create analogous interference patterns when passing through a double-slit experiment. For photons, this corresponds to the interference of a Maxwell light wave whereas, for material particles, this corresponds to the interference of the Schrödinger wave equation. Although this similarity might suggest that Maxwell's equations are simply Schrödinger's equation for photons, most physicists do not agree. For one thing, they are mathematically different; most obviously, Schrödinger's one equation solves for a complex field, whereas Maxwell's four equations solve for real fields. More generally, the normal concept of a Schrödinger probability wave function cannot be applied to photons. Being massless, they cannot be localized without being destroyed; technically, photons cannot have a position eigenstate, and, thus, the normal Heisenberg uncertainty principle does not pertain to photons. A few substitute wave functions have been suggested for the photon, but they have not come into general use. Instead, physicists generally accept the second-quantized theory of photons described below, quantum electrodynamics, in which photons are quantized excitations of electromagnetic modes.

Read more about this topic:  Photon

Famous quotes containing the words uncertainty and/or principles:

    Now, since our condition accommodates things to itself, and transforms them according to itself, we no longer know things in their reality; for nothing comes to us that is not altered and falsified by our Senses. When the compass, the square, and the rule are untrue, all the calculations drawn from them, all the buildings erected by their measure, are of necessity also defective and out of plumb. The uncertainty of our senses renders uncertain everything that they produce.
    Michel de Montaigne (1533–1592)

    It seems to me that man is made to act rather than to know: the principles of things escape our most persevering researches.
    Frederick The Great (1712–1786)