Physical Geography - Sub-fields

Sub-fields

Physical Geography can be divided into several sub-fields, as follows:

  • Geomorphology is the field concerned with understanding the surface of the Earth and the processes by which it is shaped, both at the present as well as in the past. Geomorphology as a field has several sub-fields that deal with the specific landforms of various environments e.g. desert geomorphology and fluvial geomorphology, however, these sub-fields are united by the core processes which cause them; mainly tectonic or climatic processes. Geomorphology seeks to understand landform history and dynamics, and predict future changes through a combination of field observation, physical experiment, and numerical modeling (Geomorphometry). Early studies in geomorphology are the foundation for pedology, one of two main branches of soil science.
  • Hydrology is predominantly concerned with the amounts and quality of water moving and accumulating on the land surface and in the soils and rocks near the surface and is typified by the hydrological cycle. Thus the field encompasses water in rivers, lakes, aquifers and to an extent glaciers, in which the field examines the process and dynamics involved in these bodies of water. Hydrology has historically had an important connection with engineering and has thus developed a largely quantitative method in its research; however, it does have an earth science side that embraces the systems approach. Similar to most fields of physical geography it has sub-fields that examine the specific bodies of water or their interaction with other spheres e.g. limnology and ecohydrology.
  • Glaciology is the study of glaciers and ice sheets, or more commonly the cryosphere or ice and phenomena that involve ice. Glaciology groups the latter (ice sheets) as continental glaciers and the former (glaciers) as alpine glaciers. Although, research in the areas are similar with research undertaken into both the dynamics of ice sheets and glaciers the former tends to be concerned with the interaction of ice sheets with the present climate and the latter with the impact of glaciers on the landscape. Glaciology also has a vast array of sub-fields examining the factors and processes involved in ice sheets and glaciers e.g. snow hydrology and glacial geology.
  • Biogeography is the science which deals with geographic patterns of species distribution and the processes that result in these patterns. Biogeography emerged as a field of study as a result of the work of Alfred Russel Wallace, although the field prior to the late twentieth century had largely been viewed as historic in its outlook and descriptive in its approach. The main stimulus for the field since its founding has been that of evolution, plate tectonics and the theory of island biogeography. The field can largely be divided into five sub-fields: island biogeography, paleobiogeography, phylogeography, zoogeography and phytogeography
  • Climatology is the study of the climate, scientifically defined as weather conditions averaged over a long period of time. Climatology examines both the nature of micro (local) and macro (global) climates and the natural and anthropogenic influences on them. The field is also sub-divided largely into the climates of various regions and the study of specific phenomena or time periods e.g. tropical cyclone rainfall climatology and paleoclimatology.
  • Meteorology is the interdisciplinary scientific study of the atmosphere that focuses on weather processes and short term forecasting (in contrast with climatology). Studies in the field stretch back millennia, though significant progress in meteorology did not occur until the eighteenth century. Meteorological phenomena are observable weather events which illuminate and are explained by the science of meteorology.
  • Pedology is the study of soils in their natural environment. It is one of two main branches of soil science, the other being edaphology. Pedology mainly deals with pedogenesis, soil morphology, soil classification. In physical geography pedology is largely studied due to the numerous interactions between climate (water, air, temperature), soil life (micro-organisms, plants, animals), the mineral materials within soils (biogeochemical cycles) and its position and effects on the landscape such as laterization.
  • Palaeogeography is a cross-disciplinary study that examines the preserved material in the stratigraphic record in order to determine the distribution of the continents through geologic time. Almost all the evidence for the positions of the continents comes from geology in the form of fossils or paleomagnetism. The use of this data has resulted in evidence for continental drift, plate tectonics and supercontinents. This in turn has supported palaeogeographic theories such as the Wilson cycle.
  • Coastal geography is the study of the dynamic interface between the ocean and the land, incorporating both the physical geography (i.e. coastal geomorphology, geology and oceanography) and the human geography of the coast. It involves an understanding of coastal weathering processes, particularly wave action, sediment movement and weathering, and also the ways in which humans interact with the coast. Coastal geography although predominantly geomorphological in its research is not just concerned with coastal landforms, but also the causes and influences of sea level change.
  • Oceanography is the branch of physical geography that studies the Earth's oceans and seas. It covers a wide range of topics, including marine organisms and ecosystem dynamics (biological oceanography); ocean currents, waves, and geophysical fluid dynamics (physical oceanography); plate tectonics and the geology of the sea floor (geological oceanography); and fluxes of various chemical substances and physical properties within the ocean and across its boundaries (chemical oceanography). These diverse topics reflect multiple disciplines that oceanographers blend to further knowledge of the world ocean and understanding of processes within it.
  • Quaternary science is an inter-disciplinary field of study focusing on the Quaternary period, which encompasses the last 2.6 million years. The field studies the last ice age and the recent interstadial the Holocene and uses proxy evidence to reconstruct the past environments during this period to infer the climatic and environmental changes that have occurred.
  • Landscape ecology is a sub-discipline of ecology and geography that address how spatial variation in the landscape affects ecological processes such as the distribution and flow of energy, materials and individuals in the environment (which, in turn, may influence the distribution of landscape "elements" themselves such as hedgerows). The field was largely founded by the German geographer Carl Troll Landscape ecology typically deals with problems in an applied and holistic context. The main difference between biogeography and landscape ecology is that the latter is concerned with how flows or energy and material are changed and their impacts on the landscape whereas the former is concerned with the spatial patterns of species and chemical cycles.
  • Geomatics is the field of gathering, storing, processing, and delivering of geographic information, or spatially referenced information. Geomatics includes geodesy (scientific discipline that deals with the measurement and representation of the earth, its gravitational field, and other geodynamic phenomena, such as crustal motion, oceanic tides, and polar motion) and GIS (a computer based system for capturing, storing, analyzing and managing data and associated attributes which are spatially referenced to the earth) and remote sensing (the short or large-scale acquisition of information of an object or phenomenon, by the use of either recording or real-time sensing devices that are not in physical or intimate contact with the object).
  • Environmental geography is a branch of geography that analyzes the spatial aspects of interactions between humans and the natural world. The branch bridges the divide between human and physical geography and thus requires an understanding of the dynamics of geology, meteorology, hydrology, biogeography, and geomorphology, as well as the ways in which human societies conceptualize the environment. Although the branch was previously more visible in research than at present with theories such as environmental determinism linking society with the environment. It has largely become the domain of the study of environmental management or anthropogenic influences.

Read more about this topic:  Physical Geography