Point Group - Eight Dimensions

Eight Dimensions

The eight-dimensional point groups, limiting to purely reflectional groups, can be listed by their Coxeter group. Related pure rotational groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example + has seven 3-fold gyration points and symmetry order 181440.

Coxeter group Coxeter diagram Order Related polytopes
A8 362880 (9!) 8-simplex
A8×2 ] 725760 (2x9!) 8-simplex dual compound
BC8 10321920 (288!) 8-cube,8-orthoplex
D8 5160960 (278!) 8-demicube
E8 696729600 421, 241, 142
A7×A1 80640 7-simplex prism
BC7×A1 645120 7-cube prism
D7×A1 322560 7-demicube prism
E7×A1 5806080 321 prism, 231 prism, 142 prism
A6×I2(p) 10080p duoprism
BC6×I2(p) 92160p
D6×I2(p) 46080p
E6×I2(p) 103680p
A6×A12 20160
BC6×A12 184320
D6×A12 92160
E6×A12 207360
A5×A3 17280
BC5×A3 92160
D5×A3 46080
A5×BC3 34560
BC5×BC3 184320
D5×BC3 92160
A5×H3
BC5×H3
D5×H3
A5×I2(p)×A1
BC5×I2(p)×A1
D5×I2(p)×A1
A5×A13
BC5×A13
D5×A13
A4×A4
BC4×A4
D4×A4
F4×A4
H4×A4
BC4×BC4
D4×BC4
F4×BC4
H4×BC4
D4×D4
F4×D4
H4×D4
F4×F4
H4×F4
H4×H4
A4×A3×A1 duoprism prisms
A4×BC3×A1
A4×H3×A1
BC4×A3×A1
BC4×BC3×A1
BC4×H3×A1
H4×A3×A1
H4×BC3×A1
H4×H3×A1
F4×A3×A1
F4×BC3×A1
F4×H3×A1
D4×A3×A1
D4×BC3×A1
D4×H3×A1
A4×I2(p)×I2(q) triaprism
BC4×I2(p)×I2(q)
F4×I2(p)×I2(q)
H4×I2(p)×I2(q)
D4×I2(p)×I2(q)
A4×I2(p)×A12
BC4×I2(p)×A12
F4×I2(p)×A12
H4×I2(p)×A12
D4×I2(p)×A12
A4×A14
BC4×A14
F4×A14
H4×A14
D4×A14
A3×A3×I2(p)
BC3×A3×I2(p)
H3×A3×I2(p)
BC3×BC3×I2(p)
H3×BC3×I2(p)
H3×H3×I2(p)
A3×A3×A12
BC3×A3×A12
H3×A3×A12
BC3×BC3×A12
H3×BC3×A12
H3×H3×A12
A3×I2(p)×I2(q)×A1
BC3×I2(p)×I2(q)×A1
H3×I2(p)×I2(q)×A1
A3×I2(p)×A13
BC3×I2(p)×A13
H3×I2(p)×A13
A3×A15
BC3×A15
H3×A15
I2(p)×I2(q)×I2(r)×I2(s) 16pqrs
I2(p)×I2(q)×I2(r)×A12 32pqr
I2(p)×I2(q)×A14 64pq
I2(p)×A16 128p
A18 256

Read more about this topic:  Point Group

Famous quotes containing the word dimensions:

    Words are finite organs of the infinite mind. They cannot cover the dimensions of what is in truth. They break, chop, and impoverish it.
    Ralph Waldo Emerson (1803–1882)

    Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.
    —J.L. (John Langshaw)