Synthesis
An important concept in understanding the link between the structure of polypropylene and its properties is tacticity. The relative orientation of each methyl group (CH3 in the figure) relative to the methyl groups in neighboring monomer units has a strong effect on the polymer's ability to form crystals.
A Ziegler-Natta catalyst is able to restrict linking of monomer molecules to a specific regular orientation, either isotactic, when all methyl groups are positioned at the same side with respect to the backbone of the polymer chain, or syndiotactic, when the positions of the methyl groups alternate. Commercially available isotactic polypropylene is made with two types of Ziegler-Natta catalysts. The first group of the catalysts encompases solid (mostly supported) catalysts and certain types of soluble metallocene catalysts. Such isotactic macromolecules coil into a helical shape; these helices then line up next to one another to form the crystals that give commercial isotactic polypropylene many of its desirable properties.
Another type of metallocene catalysts produce syndiotactic polypropylene. These macromolecules also coil into helices (of a different type) and form crystalline materials.
When the methyl groups in a polypropylene chain exhibit no preferred orientation, the polymers are called atactic. Atactic polypropylene is an amorphous rubbery material. It can be produced commercially either with a special type of supported Ziegler-Natta catalyst or with some metallocene catalysts.
Modern supported Ziegler-Natta catalysts developed for the polymerization of propylene and other 1-alkenes to isotactic polymers usually use TiCl4 as an active ingredient and MgCl2 as a support. The catalysts also contain organic modifiers, either aromatic acid esters and diesters or ethers. These catalysts are activated with special cocatalysts containing an organoaluminum compound such as Al(C2H5)3 and the second type of a modifier. The catalysts are differentiated depending on the procedure used for fashioning catalyst particles from MgCl2 and depending on the type of organic modifiers employed during catalyst preparation and use in polymerization reactions. Two most important technological characteristics of all the supported catalysts are high productivity and a high fraction of the crystalline isotactic polymer they produce at 70–80 °C under standard polymerization conditions. Commercial synthesis of isotactic polypropylene is usually carried out either in the medium of liquid propylene or in gas-phase reactors.
Commercial synthesis of syndiotactic polypropylene is carried out with the use of a special class of metallocene catalysts. They employ bridged bis-metallocene complexes of the type bridge-(Cp1)(Cp2)ZrCl2 where the first Cp ligand is the cyclopentadienyl group, the second Cp ligand is the fluorenyl group, and the bridge between the two Cp ligands is -CH2-CH2-, >SiMe2, or >SiPh2. These complexes are converted to polymerization catalysts by activating them with a special organoaluminum cocatalyst, methylalumoxane MAO
Read more about this topic: Polypropylene
Famous quotes containing the word synthesis:
“The new shopping malls make possible the synthesis of all consumer activities, not least of which are shopping, flirting with objects, idle wandering, and all the permutations of these.”
—Jean Baudrillard (b. 1929)
“The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.”
—Henry Brooks Adams (18381918)
“It is not easy to construct by mere scientific synthesis a foolproof system which will lead our children in a desired direction and avoid an undesirable one. Obviously, good can come only from a continuing interplay between that which we, as students, are gradually learning and that which we believe in, as people.”
—Erik H. Erikson (20th century)