The Practical QR Algorithm
Formally, let A be a real matrix of which we want to compute the eigenvalues, and let A0:=A. At the k-th step (starting with k = 0), we compute the QR decomposition Ak=QkRk where Qk is an orthogonal matrix and Rk is an upper triangular matrix. We then form Ak+1 = RkQk. Note that
so all the Ak are similar and hence they have the same eigenvalues. The algorithm is numerically stable because it proceeds by orthogonal similarity transforms.
Under certain conditions, the matrices Ak converge to a triangular matrix, the Schur form of A. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact zeros, but the Gershgorin circle theorem provides a bound on the error.
In this crude form the iterations are relatively expensive. This can be mitigated by first bringing the matrix A to upper Hessenberg form (which costs arithmetic operations using a technique based on Householder reduction), with a finite sequence of orthogonal similarity transforms, somewhat like a two-sided QR decomposition. (For QR decomposition, the Householder reflectors are multiplied only on the left, but for the Hessenberg case they are multiplied on both left and right.) Determining the QR decomposition of an upper Hessenberg matrix costs arithmetic operations. Moreover, because the Hessenberg form is already nearly upper-triangular (it has just one nonzero entry below each diagonal), using it as a starting point reduces the number of steps required for convergence of the QR algorithm.
If the original matrix is symmetric, then the upper Hessenberg matrix is also symmetric and thus tridiagonal, and so are all the Ak. This procedure costs arithmetic operations using a technique based on Householder reduction. Determining the QR decomposition of a symmetric tridiagonal matrix costs operations.
The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces the size of the matrix) with only one or two iterations, making it efficient as well as robust.
Read more about this topic: QR Algorithm
Famous quotes containing the word practical:
“As for Clothing, to come at once to the practical part of the question, perhaps we are led oftener by the love of novelty and a regard for the opinions of men, in procuring it, than by a true utility.”
—Henry David Thoreau (18171862)