Geometric Meaning
If we let the equation be with symmetric matrix A, then the geometric meaning is as follows.
If all eigenvalues of A are non-zero, then it is an ellipsoid or a hyperboloid. If all the eigenvalues are positive, then it is an ellipsoid; if all the eigenvalues are negative, it is an image ellipsoid; if some eigenvalues are positive and some are negative, then it is a hyperboloid.
If there exist one or more eigenvalues λi = 0, then if the corresponding bi ≠ 0, it is a paraboloid (either elliptic or hyperbolic); if the corresponding bi = 0, the dimension i degenerates and does not get into play, and the geometric meaning will be determined by other eigenvalues and other components of b. When it is a paraboloid, whether it is elliptic or hyperbolic is determined by whether all other non-zero eigenvalues are of the same sign: if they are, then it is elliptic; otherwise, it is hyperbolic.
Read more about this topic: Quadratic Form
Famous quotes containing the words geometric and/or meaning:
“New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.”
—Roland Barthes (19151980)
“You will never be happy if you continue to search for what happiness consists of. You will never live if you are looking for the meaning of life.”
—Albert Camus (19131960)