Non-linear Differential Equations For Quantile Functions
The non-linear ordinary differential equation given for normal distribution is a special case of that available for any quantile function whose second derivative exists. In general the equation for a quantile, Q(p), may be given. It is
augmented by suitable boundary conditions, where
and ƒ(x) is the probability density function. The forms of this equation, and its classical analysis by series and asymptotic solutions, for the cases of the normal, Student, gamma and beta distributions has been elucidated by Steinbrecher and Shaw (2008). Such solutions provide accurate benchmarks, and in the case of the Student, suitable series for live Monte Carlo use.
Read more about this topic: Quantile Function
Famous quotes containing the words differential and/or functions:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)