Quasar - Properties

Properties

More than 200,000 quasars are known, most from the Sloan Digital Sky Survey. All observed quasar spectra have redshifts between 0.056 and 7.085. Applying Hubble's law to these redshifts, it can be shown that they are between 600 million and 28 billion light-years away (in terms of proper distance). Because of the great distances to the farthest quasars and the finite velocity of light, we see them and their surrounding space as they existed in the very early universe.

Most quasars are known to be farther than three billion light-years away. Although quasars appear faint when viewed from Earth, the fact that they are visible at all from so far away is due to quasars being the most luminous objects in the known universe. The quasar that appears brightest in the sky is 3C 273 in the constellation of Virgo. It has an average apparent magnitude of 12.8 (bright enough to be seen through a medium-size amateur telescope), but it has an absolute magnitude of −26.7. From a distance of about 33 light-years, this object would shine in the sky about as brightly as our sun. This quasar's luminosity is, therefore, about 2 trillion (2 × 1012) times that of our sun, or about 100 times that of the total light of average giant galaxies like our Milky Way. However, this assumes the quasar is radiating energy in all directions. An active galactic nucleus can be associated with a powerful jet of matter and energy; it need not be radiating in all directions. In a universe containing hundreds of billions of galaxies, most of which had active nuclei billions of years ago and would be seen located billions of light-years away, it is statistically certain that thousands of energy jets are pointed toward us, some more directly than others. In many cases it is likely that the brighter the quasar, the more directly its jet is aimed at us.

The hyperluminous quasar APM 08279+5255 was, when discovered in 1998, given an absolute magnitude of −32.2, although high resolution imaging with the Hubble Space Telescope and the 10 m Keck Telescope revealed that this system is gravitationally lensed. A study of the gravitational lensing in this system suggests that it has been magnified by a factor of ~10. It is still substantially more luminous than nearby quasars such as 3C 273.

Quasars were much more common in the early universe. This discovery by Maarten Schmidt in 1967 was early strong evidence against the Steady State cosmology of Fred Hoyle, and in favor of the Big Bang cosmology. Quasars show where massive black holes are growing rapidly (via accretion). These black holes grow in step with the mass of stars in their host galaxy in a way not understood at present. One idea is that the jets, radiation and winds from quasars shut down the formation of new stars in the host galaxy, a process called 'feedback'. The jets that produce strong radio emission in some quasars at the centers of clusters of galaxies are known to have enough power to prevent the hot gas in these clusters from cooling and falling down onto the central galaxy.

Quasars are found to vary in luminosity on a variety of time scales. Some vary in brightness every few months, weeks, days, or hours. This means that quasars generate and emit their energy from a very small region, since each part of the quasar would have to be in contact with other parts on such a time scale to coordinate the luminosity variations. As such, a quasar varying on the time scale of a few weeks cannot be larger than a few light-weeks across. The emission of large amounts of power from a small region requires a power source far more efficient than the nuclear fusion that powers stars. The release of gravitational energy by matter falling towards a massive black hole is the only process known that can produce such high power continuously. Stellar explosions – supernovas and gamma-ray bursts – can do so, but only for a few weeks. Black holes were considered too exotic by some astronomers in the 1960s, and they suggested that the redshifts arose from some other (unknown) process, so that the quasars were not really so distant as the Hubble law implied. This 'redshift controversy' lasted for many years. Many lines of evidence (seeing host galaxies, finding 'intervening' absorption lines, gravitational lensing) now demonstrate that the quasar redshifts are due to the Hubble expansion, and quasars are as powerful as first thought.

Quasars have all the same properties as active galaxies, but are more powerful: their radiation is partially 'nonthermal' (i.e., not due to a black body), and approximately 10 percent are observed to also have jets and lobes like those of radio galaxies that also carry significant (but poorly known) amounts of energy in the form of high energy (i.e., rapidly moving, close to the speed of light) particles (either electrons and protons or electrons and positrons). Quasars can be detected over the entire observable electromagnetic spectrum including radio, infrared, optical, ultraviolet, X-ray and even gamma rays. Most quasars are brightest in their rest-frame near-ultraviolet (near the 1216 angstrom (121.6 nm) Lyman-alpha emission line of hydrogen), but due to the tremendous redshifts of these sources, that peak luminosity has been observed as far to the red as 9000 angstroms (900 nm or 0.9 µm), in the near infrared. A minority of quasars show strong radio emission, which originates from jets of matter moving close to the speed of light. When looked at down the jet, these appear as a blazar and often have regions that appear to move away from the center faster than the speed of light (superluminal expansion). This is an optical illusion due to the properties of special relativity.

Quasar redshifts are measured from the strong spectral lines that dominate their optical and ultraviolet spectra. These lines are brighter than the continuous spectrum, so they are called 'emission' lines. They have widths of several percent of the speed of light. These widths are due to Doppler shifts caused by the high speeds of the gas emitting the lines. Fast motions strongly indicate a large mass. Emission lines of hydrogen (mainly of the Lyman series and Balmer series), helium, carbon, magnesium, iron and oxygen are the brightest lines. The atoms emitting these lines range from neutral to highly ionized, i.e., many of the electrons are stripped off the ion, leaving it highly charged. This wide range of ionization shows that the gas is highly irradiated by the quasar, not merely hot, and not by stars, which cannot produce such a wide range of ionization.

Iron quasars show strong emission lines resulting from low ionization iron (FeII), such as IRAS 18508-7815.

Read more about this topic:  Quasar

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)