In group theory, the quaternion group is a non-abelian group of order eight, isomorphic to a certain eight-element subset of the quaternions under multiplication. It is often denoted by Q or Q8, and is given by the group presentation
where 1 is the identity element and −1 commutes with the other elements of the group.
Read more about Quaternion Group: Cayley Graph, Cayley Table, Properties, Matrix Representations, Galois Group, Generalized Quaternion Group
Famous quotes containing the word group:
“A little group of willful men, representing no opinion but their own, have rendered the great government of the United States helpless and contemptible.”
—Woodrow Wilson (18561924)