Quotient Group - Product of Subsets of A Group

Product of Subsets of A Group

In the following discussion, we will use a binary operation on the subsets of G: if two subsets S and T of G are given, we define their product as ST = {st : sStT}. This operation is associative and has as identity element the singleton {e}, where e is the identity element of G. Thus, the set of all subsets of G forms a monoid under this operation.

In terms of this operation we can first explain what a quotient group is, and then explain what a normal subgroup is:

A quotient group of a group G is a partition of G which is itself a group under this operation.

It is fully determined by the subset containing e. A normal subgroup of G is the set containing e in any such partition. The subsets in the partition are the cosets of this normal subgroup.

A subgroup N of a group G is normal if and only if the coset equality aN = Na holds for all a in G. In terms of the binary operation on subsets defined above, a normal subgroup of G is a subgroup that commutes with every subset of G and is denoted NG. A subgroup that permutes with every subgroup of G is called a permutable subgroup.

Read more about this topic:  Quotient Group

Famous quotes containing the words product of, product and/or group:

    The guys who fear becoming fathers don’t understand that fathering is not something perfect men do, but something that perfects the man. The end product of child raising is not the child but the parent.
    Frank Pittman (20th century)

    Whenever a taboo is broken, something good happens, something vitalizing.... Taboos after all are only hangovers, the product of diseased minds, you might say, of fearsome people who hadn’t the courage to live and who under the guise of morality and religion have imposed these things upon us.
    Henry Miller (1891–1980)

    For me, as a beginning novelist, all other living writers form a control group for whom the world is a placebo.
    Nicholson Baker (b. 1957)