Quotient Ring

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring or residue class ring, is a construction quite similar to the factor groups of group theory and the quotient spaces of linear algebra. One starts with a ring R and a two-sided ideal I in R, and constructs a new ring, the quotient ring R/I, essentially by requiring that all elements of I be zero. Intuitively, the quotient ring R/I is a "simplified version" of R where the elements of I are "ignored".

Quotient rings are distinct from the so-called 'quotient field', or field of fractions, of an integral domain as well as from the more general 'rings of quotients' obtained by localization.

Read more about Quotient Ring:  Formal Quotient Ring Construction, Examples, Properties

Famous quotes containing the word ring:

    Interpreting the dance: young women in white dancing in a ring can only be virgins; old women in black dancing in a ring can only be witches; but middle-aged women in colors, square dancing...?
    Mason Cooley (b. 1927)