Overview of The Radiosity Algorithm
The surfaces of the scene to be rendered are each divided up into one or more smaller surfaces (patches). A view factor is computed for each pair of patches. View factors (also known as form factors) are coefficients describing how well the patches can see each other. Patches that are far away from each other, or oriented at oblique angles relative to one another, will have smaller view factors. If other patches are in the way, the view factor will be reduced or zero, depending on whether the occlusion is partial or total.
The view factors are used as coefficients in a linearized form of the rendering equation, which yields a linear system of equations. Solving this system yields the radiosity, or brightness, of each patch, taking into account diffuse interreflections and soft shadows.
Progressive radiosity solves the system iteratively in such a way that after each iteration we have intermediate radiosity values for the patch. These intermediate values correspond to bounce levels. That is, after one iteration, we know how the scene looks after one light bounce, after two passes, two bounces, and so forth. Progressive radiosity is useful for getting an interactive preview of the scene. Also, the user can stop the iterations once the image looks good enough, rather than wait for the computation to numerically converge.
Another common method for solving the radiosity equation is "shooting radiosity," which iteratively solves the radiosity equation by "shooting" light from the patch with the most error at each step. After the first pass, only those patches which are in direct line of sight of a light-emitting patch will be illuminated. After the second pass, more patches will become illuminated as the light begins to bounce around the scene. The scene continues to grow brighter and eventually reaches a steady state.
Read more about this topic: Radiosity (computer Graphics)