Receptive Field - Visual System

Visual System

In the visual system, receptive fields are volumes in visual space. For example, the receptive field of a single photoreceptor is a cone-shaped volume comprising all the visual directions in which light will alter the firing of that cell. Its apex is located in the center of the lens and its base essentially at infinity in visual space. Traditionally, visual receptive fields were portrayed in two dimensions (e.g., as circles, squares, or rectangles), but these are simply slices, cut along the screen on which the researcher presented the stimulus, of the volume of space to which a particular cell will respond. In the case of binocular neurons in the visual cortex, receptive fields do not extend to optical infinity. Instead, they are restricted to a certain interval of distance from the animal, or from where the eyes are fixating (see Panum's area).

The receptive field is often identified as the region of the retina where the action of light alters the firing of the neuron. In retinal ganglion cells (see below), this area of the retina would encompass all the photoreceptors, all the rods and cones from one eye that are connected to this particular ganglion cell via bipolar cells, horizontal cells, and amacrine cells. In binocular neurons in the visual cortex, it is necessary to specify the corresponding area in both retinas (one in each eye). Although these can be mapped separately in each retina by shutting one or the other eye, the full influence on the neuron's firing is revealed only when both eyes are open.

Hubel and Wiesel (e.g., Hubel, 1963) advanced the theory that receptive fields of cells at one level of the visual system are formed from input by cells at a lower level of the visual system. In this way, small, simple receptive fields could be combined to form large, complex receptive fields. Later theorists elaborated this simple, hierarchical arrangement by allowing cells at one level of the visual system to be influenced by feedback from higher levels.

Receptive fields have been mapped for all levels of the visual system from photoreceptors, to retinal ganglion cells, to lateral geniculate nucleus cells, to visual cortex cells, to extrastriate cortical cells. Studies based on perception do not give the full picture of the understanding of visual phenomena, so the electrophysiological tools must be used, as the retina, after all, is an outgrowth of the brain.

Read more about this topic:  Receptive Field

Famous quotes containing the words visual and/or system:

    For women ... bras, panties, bathing suits, and other stereotypical gear are visual reminders of a commercial, idealized feminine image that our real and diverse female bodies can’t possibly fit. Without these visual references, each individual woman’s body demands to be accepted on its own terms. We stop being comparatives. We begin to be unique.
    Gloria Steinem (b. 1934)

    The intellect is vagabond, and our system of education fosters restlessness. Our minds travel when our bodies are forced to stay at home. We imitate; and what is imitation but the travelling of the mind?
    Ralph Waldo Emerson (1803–1882)