Name of The Subject
The field of mathematical logic dealing with computability and its generalizations has been called "recursion theory" since its early days. Robert I. Soare, a prominent researcher in the field, has proposed (Soare 1996) that the field should be called "computability theory" instead. He argues that Turing's terminology using the word "computable" is more natural and more widely understood than the terminology using the word "recursive" introduced by Kleene. Many contemporary researchers have begun to use this alternate terminology. These researchers also use terminology such as partial computable function and computably enumerable (c.e.) set instead of partial recursive function and recursively enumerable (r.e.) set. Not all researchers have been convinced, however, as explained by Fortnow and Simpson. Some commentators argue that both the names recursion theory and computability theory fail to convey the fact that most of the objects studied in recursion theory are not computable.
Rogers (1967) has suggested that a key property of recursion theory is that its results and structures should be invariant under computable bijections on the natural numbers (this suggestion draws on the ideas of the Erlangen program in geometry). The idea is that a computable bijection merely renames numbers in a set, rather than indicating any structure in the set, much as a rotation of the Euclidean plane does not change any geometric aspect of lines drawn on it. Since any two infinite computable sets are linked by a computable bijection, this proposal identifies all the infinite computable sets (the finite computable sets are viewed as trivial). According to Rogers, the sets of interest in recursion theory are the noncomputable sets, partitioned into equivalence classes by computable bijections of the natural numbers.
Read more about this topic: Recursion Theory
Famous quotes containing the word subject:
“People love pretty much the same things best. A writer looking for subject inquires not after what he loves best, but after what he alone loves at all.”
—Annie Dillard (b. 1945)