Technical Considerations
A curved primary mirror is the reflector telescope's basic optical element that creates an image at the focal plane. The distance from the mirror to the focal plane is called the focal length. Film or a digital sensor may be located here to record the image, or a secondary mirror may be added near the focus to modify the optical characteristics and/or redirect the light to film, digital sensors, or an eyepiece for visual observation.
The primary mirror in most modern telescopes is composed of a solid glass cylinder whose front surface has been ground to a spherical or parabolic shape. A thin layer of aluminum is vacuum deposited onto the mirror, forming a highly reflective first surface mirror.
Some telescopes use primary mirrors which are made differently. Molten glass is rotated to make its surface paraboloidal, and is kept rotating while it cools and solidifies. (See Rotating furnace.) The resulting mirror shape approximates a desired paraboloid shape that requires minimal grinding and polishing to reach the exact figure needed.
Read more about this topic: Reflecting Telescope
Famous quotes containing the word technical:
“The best work of artists in any age is the work of innocence liberated by technical knowledge. The laboratory experiments that led to the theory of pure color equipped the impressionists to paint nature as if it had only just been created.”
—Nancy Hale (b. 1908)