Reinforcement and Terminology of Beams
A beam bends under bending moment, resulting in a small curvature. At the outer face (tensile face) of the curvature the concrete experiences tensile stress, while at the inner face (compressive face) it experiences compressive stress.
A singly reinforced beam is one in which the concrete element is only reinforced near the tensile face and the reinforcement, called tension steel, is designed to resist the tension.
A doubly reinforced beam is one in which besides the tensile reinforcement the concrete element is also reinforced near the compressive face to help the concrete resist compression. The latter reinforcement is called compression steel. When the compression zone of a concrete is inadequate to resist the compressive moment (positive moment), extra reinforcement has to be provided if the architect limits the dimensions of the section.
An under-reinforced beam is one in which the tension capacity of the tensile reinforcement is smaller than the combined compression capacity of the concrete and the compression steel (under-reinforced at tensile face). When the reinforced concrete element is subject to increasing bending moment, the tension steel yields while the concrete does not reach its ultimate failure condition. As the tension steel yields and stretches, an "under-reinforced" concrete also yields in a ductile manner, exhibiting a large deformation and warning before its ultimate failure. In this case the yield stress of the steel governs the design.
An over-reinforced beam is one in which the tension capacity of the tension steel is greater than the combined compression capacity of the concrete and the compression steel (over-reinforced at tensile face). So the "over-reinforced concrete" beam fails by crushing of the compressive-zone concrete and before the tension zone steel yields, which does not provide any warning before failure as the failure is instantaneous.
A balanced-reinforced beam is one in which both the compressive and tensile zones reach yielding at the same imposed load on the beam, and the concrete will crush and the tensile steel will yield at the same time. This design criterion is however as risky as over-reinforced concrete, because failure is sudden as the concrete crushes at the same time of the tensile steel yields, which gives a very little warning of distress in tension failure.
Steel-reinforced concrete moment-carrying elements should normally be designed to be under-reinforced so that users of the structure will receive warning of impending collapse.
The characteristic strength is the strength of a material where less than 5% of the specimen shows lower strength.
The design strength or nominal strength is the strength of a material, including a material-safety factor. The value of the safety factor generally ranges from 0.75 to 0.85 in Allowable Stress Design.
The ultimate limit state is the theoretical failure point with a certain probability. It is stated under factored loads and factored resistances.
Read more about this topic: Reinforced Concrete
Famous quotes containing the word beams:
“The highway presents an interesting study of American roadside advertising. There are signs that turn like windmills; startling signs that resemble crashed airplanes; signs with glass lettering which blaze forth at night when automobile headlight beams strike them; flashing neon signs; signs painted with professional touch; signs crudely lettered and misspelled.... They extol the virtues of ice creams, shoe creams, cold creams;...”
—For the State of Florida, U.S. public relief program (1935-1943)