Resistor - Electrical and Thermal Noise

Electrical and Thermal Noise

In amplifying faint signals, it is often necessary to minimize electronic noise, particularly in the first stage of amplification. As dissipative elements, even an ideal resistor will naturally produce a randomly fluctuating voltage or "noise" across its terminals. This Johnson–Nyquist noise is a fundamental noise source which depends only upon the temperature and resistance of the resistor, and is predicted by the fluctuation–dissipation theorem. Using a larger resistor produces a larger voltage noise, whereas with a smaller value of resistance there will be more current noise, assuming a given temperature. The thermal noise of a practical resistor may also be somewhat larger than the theoretical prediction and that increase is typically frequency-dependent.

However the "excess noise" of a practical resistor is an additional source of noise observed only when a charge flows through it. This is specified in unit of μV/V/decade – μV of noise per volt applied across the resistor per decade of frequency. The μV/V/decade value is frequently given in dB so that a resistor with a noise index of 0 dB will exhibit 1 μV (rms) of excess noise for each volt across the resistor in each frequency decade. Excess noise is thus an example of 1/f noise. Thick-film and carbon composition resistors generate more excess noise than other types at low frequencies; wire-wound and thin-film resistors, though much more expensive, are often utilized for their better noise characteristics. Carbon composition resistors can exhibit a noise index of 0 dB while bulk metal foil resistors may have a noise index of −40 dB, usually making the excess noise of metal foil resistors insignificant. Thin film surface mount resistors typically have lower noise and better thermal stability than thick film surface mount resistors. Excess noise is also size-dependent: in general excess noise is reduced as the physical size of a resistor is increased (or multiple resistors are used in parallel), as the independently fluctuating resistances of smaller components will tend to average out.

While not an example of "noise" per se, a resistor may act as a thermocouple, producing a small DC voltage differential across it due to the thermoelectric effect if its ends are at somewhat different temperatures. This induced DC voltage can degrade the precision of instrumentation amplifiers in particular. Such voltages appear in the junctions of the resistor leads with the circuit board and with the resistor body. Common metal film resistors show such an effect at a magnitude of about 20 µV/°C. Some carbon composition resistors can exhibit thermoelectric offsets as high as 400 µV/°C, whereas specially constructed resistors can reduce this number to 0.05 µV/°C. In applications where the thermoelectric effect may become important, care has to be taken (for example) to mount the resistors horizontally to avoid temperature gradients and to mind the air flow over the board.

Read more about this topic:  Resistor

Famous quotes containing the words electrical and/or noise:

    Few speeches which have produced an electrical effect on an audience can bear the colourless photography of a printed record.
    Archibald Philip Primrose, 5th Earl Rosebery (1847–1929)

    There must be no cessation
    Of motion, or of the noise of motion,
    The renewal of noise
    And manifold continuation....
    Wallace Stevens (1879–1955)