Description
Ribosomes consist of two subunits (Figure 1) that fit together (Figure 2) and work as one to translate the mRNA into a polypeptide chain during protein synthesis (Figure 3). Because they are formed from two subunits of non-equal size, they are slightly longer in the axis than in diameter. Prokaryotic ribosomes are around 20 nm (200 Å) in diameter and are composed of 65% ribosomal RNA and 35% ribosomal proteins. Eukaryotic ribosomes are between 25 and 30 nm (250–300 Å) in diameter and the ratio of rRNA to protein is close to 1. Bacterial subunits consist of one or two and eukaryotic of one or three very large RNA molecules (known as ribosomal RNA or rRNA) and multiple smaller protein molecules. Crystallographic work has shown that there are no ribosomal proteins close to the reaction site for polypeptide synthesis. This suggests that the protein components of ribosomes act as a scaffold that may enhance the ability of rRNA to synthesize protein rather than directly participating in catalysis (See: Ribozyme).
Ribosomes translate polypeptide chains (e.g., proteins) from the genetic instructions held within messenger RNA, using amino acids delivered by transfer RNA (tRNA). Free ribosomes are suspended in the cytosol (the semi-fluid portion of the cytoplasm); others are bound to the rough endoplasmic reticulum, giving it the appearance of roughness and thus its name, or to the nuclear envelope. Although catalysis of the peptide bond involves the C2 hydroxyl of RNA's P-site (see Function section below) adenosine in a protein shuttle mechanism, other steps in protein synthesis (such as translocation) are caused by changes in protein conformations.Since their catalytic core is made of RNA, ribosomes are classified as "ribozymes," and it is thought that they might be remnants of the RNA world.
Ribosomes are sometimes referred to as organelles, but the use of the term organelle is often restricted to describing sub-cellular components that include a phospholipid membrane, which ribosomes, being entirely particulate, do not. For this reason, ribosomes may sometimes be described as "non-membranous organelles".
Ribosomes were first observed in the mid-1950s by Romanian cell biologist George Emil Palade using an electron microscope as dense particles or granules for which, in 1974, he would win a Nobel Prize. The term "ribosome" was proposed by scientist Richard B. Roberts in 1958:
During the course of the symposium a semantic difficulty became apparent. To some of the participants, "microsomes" mean the ribonucleoprotein particles of the microsome fraction contaminated by other protein and lipid material; to others, the microsomes consist of protein and lipid contaminated by particles. The phrase “microsomal particles” does not seem adequate, and “ribonucleoprotein particles of the microsome fraction” is much too awkward. During the meeting, the word "ribosome" was suggested, which has a very satisfactory name and a pleasant sound. The present confusion would be eliminated if “ribosome” were adopted to designate ribonucleoprotein particles in sizes ranging from 35 to 100S.
— Roberts, R. B., Microsomal Particles and Protein Synthesis
The structure and function of the ribosomes and associated molecules, known as the translational apparatus, has been of research interest since the mid-twentieth century and is a very active field of study today.
Read more about this topic: Ribosome
Famous quotes containing the word description:
“An intentional object is given by a word or a phrase which gives a description under which.”
—Gertrude Elizabeth Margaret Anscombe (b. 1919)
“Once a child has demonstrated his capacity for independent functioning in any area, his lapses into dependent behavior, even though temporary, make the mother feel that she is being taken advantage of....What only yesterday was a description of the childs stage in life has become an indictment, a judgment.”
—Elaine Heffner (20th century)
“It [Egypt] has more wonders in it than any other country in the world and provides more works that defy description than any other place.”
—Herodotus (c. 484424 B.C.)