Ribozyme

A ribozyme (ribonucleic acid enzyme) is an RNA molecule that is capable of performing specific biochemical reactions, similar to the action of protein enzymes. The 1981 discovery of ribozymes demonstrated that RNA can be both genetic material (like DNA) and a biological catalyst (like protein enzymes), and contributed to the RNA world hypothesis, which suggests that RNA may have been important in the evolution of prebiotic self-replicating systems. Also termed catalytic RNA, ribozymes function within the ribosome (as part of the large subunit ribosomal RNA) to link amino acids during protein synthesis, and in a variety of RNA processing reactions, including RNA splicing, viral replication, and transfer RNA biosynthesis. Examples of ribozymes include the hammerhead ribozyme, the VS ribozyme and the hairpin ribozyme.

Investigators studying the origin of life have produced ribozymes in the laboratory that are capable of catalyzing their own synthesis under very specific conditions, such as an RNA polymerase ribozyme. Mutagenesis and selection has been performed resulting in isolation of improved variants of the "Round-18" polymerase ribozyme from 2001. "B6.61" is able to add up to 20 nucleotides to a primer template in 24 hours, until it decomposes by cleavage of its phosphodiester bonds. The "tC19Z" ribozyme can add up to 95 nucleotides with a fidelity of 0.0083 mutations/nucleotide.

Some ribozymes may play an important role as therapeutic agents, as enzymes which tailor defined RNA sequences, as biosensors, and for applications in functional genomics and gene discovery.

Read more about Ribozyme:  Discovery, Activity, Known Ribozymes, Artificial Ribozymes, Applications