Rocket Propellant - Chemical Propellants - Solid Propellants - Disadvantages

Disadvantages

Relative to liquid fuel rockets, solid fuel rockets have lower specific impulse. The propellant mass ratios of solid propellant upper stages is usually in the .91 to .93 range which is as good or better than that of most liquid propellant upper stages but overall performance is less than for liquid stages because of the solids' lower exhaust velocities. The high mass ratios possible with (unsegmented) solids is a result of high propellant density and very high strength-to-weight ratio filament-wound motor casings. A drawback to solid rockets is that they cannot be throttled in real time, although a programmed thrust schedule can be created by adjusting the interior propellant geometry. Solid rockets can be vented to extinguish combustion or reverse thrust as a means of controlling range or accommodating warhead separation. Casting large amounts of propellant requires consistency and repeatability which is assured by computer control. Casting voids in propellant can adversely affect burn rate so the blending and casting takes place under vacuum and the propellant blend is spread thin and scanned to assure no large gas bubbles are introduced into the motor. Solid fuel rockets are intolerant to cracks and voids and often require post-processing such as x-ray scans to identify faults. Since the combustion process is dependent on the surface area of the fuel; voids and cracks represent local increases in burning surface area. This increases the local temperature, system pressure and radiative heat flux to the surface. This positive feedback loop further increases burn rate and can easily lead to catastrophic failure typically due to case failure or nozzle system damage.

Read more about this topic:  Rocket Propellant, Chemical Propellants, Solid Propellants