Routing - Multiple Agents

Multiple Agents

In some networks, routing is complicated by the fact that no single entity is responsible for selecting paths: instead, multiple entities are involved in selecting paths or even parts of a single path. Complications or inefficiency can result if these entities choose paths to optimize their own objectives, which may conflict with the objectives of other participants.

A classic example involves traffic in a road system, in which each driver picks a path which minimizes their own travel time. With such routing, the equilibrium routes can be longer than optimal for all drivers. In particular, Braess paradox shows that adding a new road can lengthen travel times for all drivers.

In another model, for example used for routing automated guided vehicles (AGVs) on a terminal, reservations are made for each vehicle to prevent simultaneous use of the same part of an infrastructure. This approach is also referred to as context-aware routing.

The Internet is partitioned into autonomous systems (ASs) such as internet service providers (ISPs), each of which has control over routes involving its network, at multiple levels. First, AS-level paths are selected via the BGP protocol, which produces a sequence of ASs through which packets will flow. Each AS may have multiple paths, offered by neighboring ASs, from which to choose. Its decision often involves business relationships with these neighboring ASs, which may be unrelated to path quality or latency. Second, once an AS-level path has been selected, there are often multiple corresponding router-level paths, in part because two ISPs may be connected in multiple locations. In choosing the single router-level path, it is common practice for each ISP to employ hot-potato routing: sending traffic along the path that minimizes the distance through the ISP's own network—even if that path lengthens the total distance to the destination.

Consider two ISPs, A and B, which each have a presence in New York, connected by a fast link with latency 5 ms; and which each have a presence in London connected by a 5 ms link. Suppose both ISPs have trans-Atlantic links connecting their two networks, but A's link has latency 100 ms and B's has latency 120 ms. When routing a message from a source in A's London network to a destination in B's New York network, A may choose to immediately send the message to B in London. This saves A the work of sending it along an expensive trans-Atlantic link, but causes the message to experience latency 125 ms when the other route would have been 20 ms faster.

A 2003 measurement study of Internet routes found that, between pairs of neighboring ISPs, more than 30% of paths have inflated latency due to hot-potato routing, with 5% of paths being delayed by at least 12 ms. Inflation due to AS-level path selection, while substantial, was attributed primarily to BGP's lack of a mechanism to directly optimize for latency, rather than to selfish routing policies. It was also suggested that, were an appropriate mechanism in place, ISPs would be willing to cooperate to reduce latency rather than use hot-potato routing.

Such a mechanism was later published by the same authors, first for the case of two ISPs and then for the global case.

Read more about this topic:  Routing

Famous quotes containing the words multiple and/or agents:

    ... the generation of the 20’s was truly secular in that it still knew its theology and its varieties of religious experience. We are post-secular, inventing new faiths, without any sense of organizing truths. The truths we accept are so multiple that honesty becomes little more than a strategy by which you manage your tendencies toward duplicity.
    Ann Douglas (b. 1942)

    Even though fathers, grandparents, siblings, memories of ancestors are important agents of socialization, our society focuses on the attributes and characteristics of mothers and teachers and gives them the ultimate responsibility for the child’s life chances.
    Sara Lawrence Lightfoot (20th century)