Generalizations
Group-like structures | |||||
Totality* | Associativity | Identity | Inverses | Commutativity | |
---|---|---|---|---|---|
Magma | Yes | No | No | No | No |
Semigroup | Yes | Yes | No | No | No |
Monoid | Yes | Yes | Yes | No | No |
Group | Yes | Yes | Yes | Yes | No |
Abelian Group | Yes | Yes | Yes | Yes | Yes |
Loop | Yes | No | Yes | Yes | No |
Quasigroup | Yes | No | No | Yes | No |
Groupoid | No | Yes | Yes | Yes | No |
Category | No | Yes | Yes | No | No |
Semicategory | No | Yes | No | No | No |
If the associativity axiom of a semigroup is dropped, the result is a magma, which is nothing more than a set M equipped with a binary operation M × M → M.
Generalizing in a different direction, an n-ary semigroup (also n-semigroup, polyadic semigroup or multiary semigroup) is a generalization of a semigroup to a set G with a n-ary operation instead of a binary operation. The associative law is generalized as follows: ternary associativity is (abc)de = a(bcd)e = ab(cde), i.e. the string abcde with any three adjacent elements bracketed. N-ary associativity is a string of length n + (n − 1) with any n adjacent elements bracketed. A 2-ary semigroup is just a semigroup. Further axioms lead to an n-ary group.
A third generalization is the semigroupoid, in which the requirement that the binary relation be total is lifted. As categories generalize monoids in the same way, a semigroupoid behaves much like a category but lacks identities.
Read more about this topic: Semigroup