History
The study of semigroups trailed behind that of other algebraic structures with more complex axioms such as groups or rings. A number of sources attribute the first use of the term (in French) to J.-A. de Séguier in Élements de la Théorie des Groupes Abstraits (Elements of the Theory of Abstract Groups) in 1904. The term is used in English in 1908 in Harold Hinton's Theory of Groups of Finite Order.
Anton Suschkewitsch obtained the first non-trivial results about semigroups. His 1928 paper Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit (On finite groups without the rule of unique invertibility) determined the structure of finite simple semigroups and showed that the minimal ideal (or Green's relations J-class) of a finite semigroup is simple. From that point on, the foundations of semigroup theory were further laid by David Rees, James Alexander Green, Evgenii Sergeevich Lyapin, Alfred H. Clifford and Gordon Preston. The latter two published a two-volume monograph on semigroup theory in 1961 and 1967 respectively. In 1970, a new periodical called Semigroup Forum (currently edited by Springer Verlag) became one of the few mathematical journals devoted entirely to semigroup theory.
In recent years researchers in the field have become more specialized with dedicated monographs appearing on important classes of semigroups, like inverse semigroups, as well as monographs focusing on applications in algebraic automata theory, particularly for finite automata, and also in functional analysis.
Read more about this topic: Semigroup
Famous quotes containing the word history:
“As History stands, it is a sort of Chinese Play, without end and without lesson.”
—Henry Brooks Adams (18381918)
“No matter how vital experience might be while you lived it, no sooner was it ended and dead than it became as lifeless as the piles of dry dust in a school history book.”
—Ellen Glasgow (18741945)
“The history of a soldiers wound beguiles the pain of it.”
—Laurence Sterne (17131768)