Semigroup - Special Classes of Semigroups

Special Classes of Semigroups

  • A monoid is a semigroup with identity.
  • A subsemigroup is a subset of a semigroup that is closed under the semigroup operation.
  • A band is a semigroup the operation of which is idempotent.
  • A cancellative semigroup is one having the cancellation property: a · b = a · c implies b = c and similarly for b · a = c · a.
  • A semilattice is a semigroup whose operation is idempotent and commutative.
  • 0-simple semigroups.
  • Transformation semigroups: any finite semigroup S can be represented by transformations of a (state-) set Q of at most |S|+1 states. Each element x of S then maps Q into itself x: QQ and sequence xy is defined by q(xy) = (qx)y for each q in Q. Sequencing clearly is an associative operation, here equivalent to function composition. This representation is basic for any automaton or finite state machine (FSM).
  • The bicyclic semigroup is in fact a monoid, which can be described as the free semigroup on two generators p and q, under the relation p q = 1.
  • C0-semigroups.
  • Regular semigroups. Every element x has at least one inverse y satisfying xyx=x and yxy=y; the elements x and y are sometimes called "mutually inverse".
  • Inverse semigroups are regular semigroups where every element has exactly one inverse. Alternatively, a regular semigroup is inverse if and only if any two idempotents commute.
  • Affine semigroup: a semigroup that is isomorphic to a finitely-generated subsemigroup of Zd. These semigroups have applications to commutative algebra.

Read more about this topic:  Semigroup

Famous quotes containing the words special and/or classes:

    The treatment of the incident of the assault upon the sailors of the Baltimore is so conciliatory and friendly that I am of the opinion that there is a good prospect that the differences growing out of that serious affair can now be adjusted upon terms satisfactory to this Government by the usual methods and without special powers from Congress.
    Benjamin Harrison (1833–1901)

    There are two classes of men called poets. The one cultivates life, the other art,... one satisfies hunger, the other gratifies the palate.
    Henry David Thoreau (1817–1862)