The sievert (symbol: Sv) is the International System of Units (SI) derived unit of equivalent radiation dose, effective dose, and committed dose. Quantities that are measured in sieverts are designed to represent the stochastic biological effects of ionizing radiation. The sievert should not be used to express the unmodified absorbed dose of radiation energy, which is a clear physical quantity measured in grays. To enable consideration of biological effects, further calculations must be performed to convert absorbed dose into effective dose, the details of which depend on the biological context. This can be far more complicated than just multiplying by a weighting factor.
The sievert is of fundamental importance in radiation dosimetry, and is named after Rolf Maximilian Sievert, a Swedish medical physicist renowned for work on radiation dosage measurement and research into the biological effects of radiation. One sievert equals 100 rem, an older unit of measurement still in widespread use. One sievert carries with it a 5.5% chance of eventually developing cancer. Doses greater than 1 sievert received over a short time period are likely to cause radiation poisoning, possibly leading to death within weeks.
Read more about Sievert: Definition, Health Effects, Dose Examples