Maximal Smooth Atlases
By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one to one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal atlas and vice versa.
In general, computations with the maximal atlas of a manifold are rather unwieldy. For most applications, it suffices to choose a smaller atlas. For example, if the manifold is compact, then one can find an atlas with only finitely many charts.
Read more about this topic: Smooth Structure
Famous quotes containing the word smooth:
“There are acacias, a graceful species amusingly devitalized by sentimentality, this kind drooping its leaves with the grace of a young widow bowed in controllable grief, this one obscuring them with a smooth silver as of placid tears. They please, like the minor French novelists of the eighteenth century, by suggesting a universe in which nothing cuts deep.”
—Rebecca West (18921983)