Uses
Soil is used in agriculture, where it serves as the anchor and primary nutrient base for plants; however, as demonstrated by hydroponics, it is not essential to plant growth if the soil-contained nutrients can be dissolved in a solution. The types of soil and available moisture determine the species of plants that can be cultivated.
Soil material is also a critical component in the mining and construction industries. Soil serves as a foundation for most construction projects. The movement of massive volumes of soil can be involved in surface mining, road building and dam construction. Earth sheltering is the architectural practice of using soil for external thermal mass against building walls.
Soil resources are critical to the environment, as well as to food and fibre production. Soil provides minerals and water to plants. Soil absorbs rainwater and releases it later, thus preventing floods and drought. Soil cleans water as it percolates through it. Soil is the habitat for many organisms: the major part of known and unknown biodiversity is in the soil, in the form of invertebrates (earthworms, woodlice, millipedes, centipedes, snails, slugs, mites, springtails, enchytraeids, nematodes, protists), bacteria, archaea, fungi and algae; and most organisms living above ground have part of them (plants) or spend part of their life cycle (insects) below-ground. Above-ground and below-ground biodiversities are tightly interconnected, making soil protection of paramount importance for any restoration or conservation plan.
The biological component of soil is an extremely important carbon sink since about 57% of the biotic content is carbon. Even on desert crusts, cyanobacteria lichens and mosses capture and sequester a significant amount of carbon by photosynthesis. Poor farming and grazing methods have degraded soils and released much of this sequestered carbon to the atmosphere. Restoring the world's soils could offset some of the huge increase in greenhouse gases causing global warming, while improving crop yields and reducing water needs.
Waste management often has a soil component. Septic drain fields treat septic tank effluent using aerobic soil processes. Landfills use soil for daily cover. Land application of waste water relies on soil biology to aerobically treat BOD.
Organic soils, especially peat, serve as a significant fuel resource; but wide areas of peat production, such as sphagnum bogs, are now protected because of patrimonial interest.
Both animals and humans in many cultures occasionally consume soil. It has been shown that some monkeys consume soil, together with their preferred food (tree foliage and fruits), in order to alleviate tannin toxicity.
Soils filter and purify water and affect its chemistry. Rain water and pooled water from ponds, lakes and rivers percolate through the soil horizons and the upper rock strata, thus becoming groundwater. Pests (viruses) and pollutants, such as persistent organic pollutants (chlorinated pesticides, polychlorinated biphenyls), oils (hydrocarbons), heavy metals (lead, zinc, cadmium), and excess nutrients (nitrates, sulfates, phosphates) are filtered out by the soil. Soil organisms metabolise them or immobilise them in their biomass and necromass, thereby incorporating them into stable humus. The physical integrity of soil is also a prerequisite for avoiding landslides in rugged landscapes.
Read more about this topic: Soil