Spinor - Summary in Low Dimensions

Summary in Low Dimensions

  • In 1 dimension (a trivial example), the single spinor representation is formally Majorana, a real 1-dimensional representation that does not transform.
  • In 2 Euclidean dimensions, the left-handed and the right-handed Weyl spinor are 1-component complex representations, i.e. complex numbers that get multiplied by e±/2 under a rotation by angle φ.
  • In 3 Euclidean dimensions, the single spinor representation is 2-dimensional and quaternionic. The existence of spinors in 3 dimensions follows from the isomorphism of the groups SU(2) ≅ Spin(3) which allows us to define the action of Spin(3) on a complex 2-component column (a spinor); the generators of SU(2) can be written as Pauli matrices.
  • In 4 Euclidean dimensions, the corresponding isomorphism is Spin(4) ≅ SU(2) × SU(2). There are two inequivalent quaternionic 2-component Weyl spinors and each of them transforms under one of the SU(2) factors only.
  • In 5 Euclidean dimensions, the relevant isomorphism is Spin(5) ≅ USp(4) ≅ Sp(2) which implies that the single spinor representation is 4-dimensional and quaternionic.
  • In 6 Euclidean dimensions, the isomorphism Spin(6) ≅ SU(4) guarantees that there are two 4-dimensional complex Weyl representations that are complex conjugates of one another.
  • In 7 Euclidean dimensions, the single spinor representation is 8-dimensional and real; no isomorphisms to a Lie algebra from another series (A or C) exist from this dimension on.
  • In 8 Euclidean dimensions, there are two Weyl-Majorana real 8-dimensional representations that are related to the 8-dimensional real vector representation by a special property of Spin(8) called triality.
  • In d + 8 dimensions, the number of distinct irreducible spinor representations and their reality (whether they are real, pseudoreal, or complex) mimics the structure in d dimensions, but their dimensions are 16 times larger; this allows one to understand all remaining cases. See Bott periodicity.
  • In spacetimes with p spatial and q time-like directions, the dimensions viewed as dimensions over the complex numbers coincide with the case of the p + q-dimensional Euclidean space, but the reality projections mimic the structure in |p − q| Euclidean dimensions. For example, in 3 + 1 dimensions there are two non-equivalent Weyl complex (like in 2 dimensions) 2-component (like in 4 dimensions) spinors, which follows from the isomorphism SL(2, C) ≅ Spin(3,1).
Metric signature left-handed Weyl right-handed Weyl conjugacy Dirac left-handed Majorana-Weyl right-handed Majorana-Weyl Majorana
complex complex complex real real real
(2,0) 1 1 mutual 2 - - 2
(1,1) 1 1 self 2 1 1 2
(3,0) - - - 2 - - -
(2,1) - - - 2 - - 2
(4,0) 2 2 self 4 - - -
(3,1) 2 2 mutual 4 - - 4
(5,0) - - - 4 - - -
(4,1) - - - 4 - - -
(6,0) 4 4 mutual 8 - - 8
(5,1) 4 4 self 8 - - -
(7,0) - - - 8 - - 8
(6,1) - - - 8 - - -
(8,0) 8 8 self 16 8 8 16
(7,1) 8 8 mutual 16 - - 16
(9,0) - - - 16 - - 16
(8,1) - - - 16 - - 16

Read more about this topic:  Spinor

Famous quotes containing the words summary and/or dimensions:

    Product of a myriad various minds and contending tongues, compact of obscure and minute association, a language has its own abundant and often recondite laws, in the habitual and summary recognition of which scholarship consists.
    Walter Pater (1839–1894)

    I was surprised by Joe’s asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.
    Henry David Thoreau (1817–1862)