Strain Rate

Strain rate is the rate of change in strain (deformation) of a material with respect to time.

The strain rate at some point within the material measures the rate at which the distances of adjacent parcels of the material change with time in the neighborhood of that point. It comprises both the rate at which the material is expanding or shrinking (expansion rate), and also the rate at which it is being deformed by progressive shearing without changing its volume (shear rate). It is zero if these distances do not change, as happens when all particles in some region are moving with the same velocity (same speed and direction) and/or rotating with the same angular velocity, as if that part of the medium were a rigid body.

The strain rate is a concept of materials science and continuum mechanics, that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity coefficient) and one relating to the shear rate (the "ordinary" viscosity coefficient).

Read more about Strain Rate:  Definition, See Also

Famous quotes containing the words strain and/or rate:

    That strain again, it had a dying fall;
    O, it came o’er my ear like the sweet sound
    That breathes upon a bank of violets,
    Stealing and giving odor. Enough, no more,
    ‘Tis not so sweet now as it was before.
    William Shakespeare (1564–1616)

    Writing a book I have found to be like building a house. A man forms a plan, and collects materials. He thinks he has enough to raise a large and stately edifice; but after he has arranged, compacted and polished, his work turns out to be a very small performance. The authour however like the builder, knows how much labour his work has cost him; and therefore estimates it at a higher rate than other people think it deserves,
    James Boswell (1740–1795)