Magnetostratigraphy
Magnetostratigraphy is a chronostratigraphic technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout a section. The samples are analyzed to determine their detrital remnant magnetism (DRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. For sedimentary rocks, this is possible because, when very fine-grained magnetic minerals (< 17 micrometres) fall through the water column, they orient themselves with Earth's magnetic field. Upon burial, that orientation is preserved. The minerals behave like tiny compasses. For volcanic rocks, magnetic minerals, which form as the melt cools, orient with the ambient magnetic field.
Oriented paleomagnetic core samples are collected in the field; mudstones, siltstones, and very fine-grained sandstones are the preferred lithologies because the magnetic grains are finer and more likely to orient with the ambient field during deposition. If the ancient magnetic field were oriented similar to today's field (North Magnetic Pole near the North Rotational Pole), the strata would retain a normal polarity. If the data indicate that the North Magnetic Pole were near the South Rotational Pole, the strata would exhibit reversed polarity.
Results of the individual samples are analyzed by removing the natural remanent magnetization (NRM) to reveal the DRM. Following statistical analysis, the results are used to generate a local magnetostratigraphic column that can then be compared against the Global Magnetic Polarity Time Scale.
This technique is used to date sequences that generally lack fossils or interbedded igneous rocks. The continuous nature of the sampling means that it is also a powerful technique for the estimation of sediment-accumulation rates.
Read more about this topic: Stratigraphy