Sunspot - Physics

Physics

Although the details of sunspot generation are still a matter of research, it appears that sunspots are the visible counterparts of magnetic flux tubes in the Sun's convective zone that get "wound up" by differential rotation. If the stress on the tubes reaches a certain limit, they curl up like a rubber band and puncture the Sun's surface. Convection is inhibited at the puncture points; the energy flux from the Sun's interior decreases; and with it surface temperature.

The Wilson effect tells us that sunspots are actually depressions on the Sun's surface. Observations using the Zeeman effect show that prototypical sunspots come in pairs with opposite magnetic polarity. From cycle to cycle, the polarities of leading and trailing (with respect to the solar rotation) sunspots change from north/south to south/north and back. Sunspots usually appear in groups.

The sunspot itself can be divided into two parts:

  • The central umbra, which is the darkest part, where the magnetic field is approximately vertical (normal to the Sun's surface).
  • The surrounding penumbra, which is lighter, where the magnetic field is more inclined.

Magnetic pressure should tend to remove field concentrations, causing the sunspots to disperse, but sunspot lifetimes are measured in days or even weeks. Recent observations from the Solar and Heliospheric Observatory (SOHO) using sound waves traveling below the Sun's photosphere (local helioseismology) have been used to develop a three-dimensional image of the internal structure below sunspots; these observations show that there is a powerful downdraft underneath each sunspot, forming a rotating vortex that concentrates the magnetic field. Sunspots can thus be thought of as self-perpetuating storms, analogous in some ways to terrestrial hurricanes.

Sunspot activity cycles about every eleven years. The point of highest sunspot activity during this cycle is known as Solar Maximum, and the point of lowest activity is Solar Minimum. Early in the cycle, sunspots appear in the higher latitudes and then move towards the equator as the cycle approaches maximum: this is called Spörer's law.

Wolf number sunspot index displays various periods, the most prominent of which is at about 11 years in the mean. This period is also observed in most other expressions of solar activity and is deeply linked to a variation in the solar magnetic field that changes polarity with this period, too.

The modern understanding of sunspots starts with George Ellery Hale, who first linked magnetic fields and sunspots in 1908. Hale suggested that the sunspot cycle period is 22 years, covering two polar reversals of the solar magnetic dipole field. Horace W. Babcock later proposed a qualitative model for the dynamics of the solar outer layers. The Babcock Model explains that magnetic fields cause the behavior described by Spörer's law, as well as other effects, which are twisted by the Sun's rotation.

Read more about this topic:  Sunspot

Famous quotes containing the word physics:

    The fundamental laws of physics do not describe true facts about reality. Rendered as descriptions of facts, they are false; amended to be true, they lose their explanatory force.
    Nancy Cartwright (b. 1945)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    The labor we delight in physics pain.
    William Shakespeare (1564–1616)