A supernova (abbreviated SN, plural SNe after supernovae) is a stellar explosion that is more energetic than a nova. It is pronounced /ˌsuːpərˈnoʊvə/ with the plural supernovae /ˌsuːpərˈnoʊviː/ or supernovas. Supernovae are extremely luminous and cause a burst of radiation that often briefly outshines an entire galaxy, before fading from view over several weeks or months. During this short interval a supernova can radiate as much energy as the Sun is expected to emit over its entire life span. The explosion expels much or all of a star's material at a velocity of up to 30,000 km/s (10% of the speed of light), driving a shock wave into the surrounding interstellar medium. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant.
Nova means "new" in Latin, referring to what appears to be a very bright new star shining in the celestial sphere; the prefix "super-" distinguishes supernovae from ordinary novae which are far less luminous. The word supernova was coined by Walter Baade and Fritz Zwicky in 1931. Supernovae can be triggered in one of two ways: by the sudden reignition of nuclear fusion in a degenerate star; or by the collapse of the core of a massive star. The core of an aging massive star may undergo sudden gravitational collapse, releasing gravitational potential energy that can create a supernova explosion. Alternatively a white dwarf star may accumulate sufficient material from a stellar companion (either through accretion or via a merger) to raise its core temperature enough to ignite carbon fusion, at which point it undergoes runaway nuclear fusion, completely disrupting it.
Although no supernova has been observed in the Milky Way since 1604, supernovae remnants indicate that on average the event occurs about once every 50 years in the Milky Way. They play a significant role in enriching the interstellar medium with higher mass elements. Furthermore, the expanding shock waves from supernova explosions can trigger the formation of new stars.
Read more about Supernova: Observation History, Discovery, Naming Convention, Classification, Current Models, Milky Way Candidates