Surface Gravity - Mass, Radius and Surface Gravity

Mass, Radius and Surface Gravity

Surface gravity of
some Solar System bodies
compared with Earth
Name Surface gravity
Mercury 0.38
Venus 0.90
Earth 1.00
Moon 0.165
Mars 0.38
Jupiter 2.53
Saturn 1.07
Uranus 0.89
Neptune 1.14
Pluto 0.067

In the Newtonian theory of gravity, the gravitational force exerted by an object is proportional to its mass: an object with twice the mass produces twice as much force. Newtonian gravity also follows an inverse square law, so that moving an object twice as far away divides its gravitational force by four, and moving it ten times as far away divides it by 100. This is similar to the intensity of light, which also follows an inverse square law: with relation to distance, light exponentially becomes less visible.

A large object, such as a planet or star, will usually be approximately round, approaching hydrostatic equilibrium (where all points on the surface have the same amount of gravitational potential energy). On a small scale, higher parts of the terrain are eroded, with eroded material deposited in lower parts of the terrain. On a large scale, the planet or star itself deforms until equilibrium is reached. For most celestial objects, the result is that the planet or star in question can be treated as a near-perfect sphere when the rotation rate is low. However, for young, massive stars, the equatorial azimuthal velocity can be quite high—up to 200 km/s or more—causing a significant amount of equatorial bulge. Examples of such rapidly rotating stars include Achernar, Altair, Regulus A and Vega.

The fact that many large celestial objects are approximately spheres makes it easier to calculate their surface gravity. The gravitational force outside a spherically symmetric body is the same as if its entire mass were concentrated in the center, as was established by Sir Isaac Newton. Therefore, the surface gravity of a planet or star with a given mass will be approximately inversely proportional to the square of its radius, and the surface gravity of a planet or star with a given average density will be approximately proportional to its radius. For example, the recently discovered planet, Gliese 581 c, has at least 5 times the mass of Earth, but is unlikely to have 5 times its surface gravity. If its mass is no more than 5 times that of the Earth, as is expected, and if it is a rocky planet with a large iron core, it should have a radius approximately 50% larger than that of Earth. Gravity on such a planet's surface would be approximately 2.2 times as strong as on Earth. If it is an icy or watery planet, its radius might be as large as twice the Earth's, in which case its surface gravity might be no more than 1.25 times as strong as the Earth's.

These proportionalities may be expressed by the formula g = m/r2, where g is the surface gravity of an object, expressed as a multiple of the Earth's, m is its mass, expressed as a multiple of the Earth's mass (5.976·1024 kg) and r its radius, expressed as a multiple of the Earth's (mean) radius (6,371 km). For instance, Mars has a mass of 6.4185·1023 kg = 0.107 Earth masses and a mean radius of 3,390 km = 0.532 Earth radii. The surface gravity of Mars is therefore approximately

times that of Earth. Without using the Earth as a reference body, the surface gravity may also be calculated directly from Newton's Law of Gravitation, which gives the formula

where M is the mass of the object, r is its radius, and G is the gravitational constant. If we let ρ = m/V denote the mean density of the object, we can also write this as

so that, for fixed mean density, the surface gravity g is proportional to the radius r.

Since gravity is inversely proportional to the square of the distance, a space station 100 miles above the Earth feels almost the same gravitational force as we do on the Earth's surface. The reason a space station does not plummet to the ground is not that it is not subject to gravity, but that it is in a free-fall orbit.

Read more about this topic:  Surface Gravity

Famous quotes containing the words surface and/or gravity:

    Here Men from The Planet Earth
    First Set Foot upon The Moon
    July, 1969 AD
    We Came in Peace for All Mankind
    —Plaque left behind on the moon’s surface by the crew of Apollo 11.

    Here I sit down to form characters. One I intend to be all goodness; All goodness he is. Another I intend to be all gravity; All gravity he is. Another Lady Gish; All Lady Gish she is. I am all the while absorbed in the character. It is not fair to say—I, identically I, am anywhere, while I keep within the character.
    Samuel Richardson (1689–1761)