Subsonic and Transonic Behavior
As an aircraft enters the transonic speeds just below the speed of sound, an effect known as wave drag starts to appear. Using conservation of momentum principles in the direction normal to surface curvature, airflow accelerates around curved surfaces, and near the speed of sound the acceleration can cause the airflow to reach supersonic speeds. When this occurs, an oblique shock wave is generated at the point where the flow slows down back to subsonic speed. Since this occurs on curved areas, they are normally associated with the upper surfaces of the wing, the cockpit canopy, and the nose cone of the aircraft, areas with the highest local curvature.
Shock waves require energy to form. This energy is taken out of the aircraft, which has to supply extra thrust to make up for this energy loss. Thus the shocks are seen as a form of drag. Since the shocks form when the local air velocity reaches supersonic speeds over various features of the aircraft, there is a certain "critical mach" speed (or drag divergence mach number) where this effect becomes noticeable. This is normally when the shocks start generating over the wing, which on most aircraft is the largest continually curved surface, and therefore the largest contributor to this effect.
One of the simplest and best explanations of how the swept wing works was offered by Robert T. Jones: "Suppose a cylindrical wing (constant chord, incidence, etc.) is placed in an airstream at an angle of yaw - ie., it is swept back. Now, even if the local speed of the air on the upper surface of the wing becomes supersonic, a shock wave cannot form there because it would have to be a sweptback shock - swept at the same angle as the wing - ie., it would be an oblique shock. Such an oblique shock cannot form until the velocity component normal to it becomes supersonic."
One limiting factor in swept wing design is the so-called "middle effect". If a swept wing is continuous - an oblique swept wing, the pressure iso-bars will be swept at a continuous angle from tip to tip. However, if the left and right halves are swept back equally, as is common practice, the pressure iso-bars on the left wing in theory will meet the pressure iso-bars of the right wing on the centerline at a large angle. As the iso-bars cannot meet in such a fashion, they will tend to curve on each side as the near the centerline, so that the iso-bars cross the centerline at right angles to the centerline. This causes an "unsweeping" of the iso-bars in the wing root region. To combat this unsweeping, German aerodynamicist Dietrich Küchemann proposed and had tested a local indentation of the fuselage above and below the wing root. This proved to not be very effective. During the development of the Douglas DC-8 airliner, uncambered airfoils were used in the wing root area to combat the unsweeping. Similarly, a decambered wing root glove was added to the Boeing 707 wing to create the Boeing 720.
Read more about this topic: Swept Wing
Famous quotes containing the word behavior:
“Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.”
—Cathy Rindner Tempelsman (20th century)