Supersonic Behavior
Airflow at supersonic speeds generates lift through the formation of shock waves, as opposed to the patterns of airflow over and under the wing. These shock waves, as in the transonic case, generate large amounts of drag. One of these shock waves is created by the leading edge of the wing, but contributes little to the lift. In order to minimize the strength of this shock it needs to remain "attached" to the front of the wing, which demands a very sharp leading edge. To better shape the shocks that will contribute to lift, the rest of an ideal supersonic airfoil is roughly diamond-shaped in cross-section. For low-speed lift these same airfoils are very inefficient, leading to poor handling and very high landing speeds.
One way to avoid the need for a dedicated supersonic wing is to use a highly swept subsonic design. Airflow behind the shock waves of a moving body are reduced to subsonic speeds. This effect is used within the intakes of engines meant to operate in the supersonic, as jet engines are generally incapable of ingesting supersonic air directly. This can also be used to reduce the speed of the air as seen by the wing, using the shocks generated by the nose of the aircraft. As long as the wing lies behind the cone-shaped shock wave, it will "see" subsonic airflow and work as normal. The angle needed to lie behind the cone increases with increasing speed, at Mach 1.3 the angle is about 45 degrees, at Mach 2.0 it is 60 degrees. For instance, at Mach 1.3 the angle of the Mach cone formed off the body of the aircraft will be at about sinμ = 1/M (μ is the sweep angle of the Mach cone)
Generally it is not possible to arrange the wing so it will lie entirely outside the supersonic airflow and still have good subsonic performance. Some aircraft, like the English Electric Lightning or Convair F-106 Delta Dart are tuned entirely for high-speed flight and feature highly swept planforms without regard to the low-speed problems this creates. In other cases the use of variable geometry wings, as on the Grumman F-14 Tomcat, allows an aircraft to move the wing to keep it at the most efficient angle regardless of speed, although the cost in complexity and weight makes this a rare feature.
Most high-speed aircraft have a wing that spends at least some of its time in the supersonic airflow. But since the shock cone moves towards the fuselage with increased speed (that is, the cone becomes narrower), the portion of the wing in the supersonic flow also changes with speed. Since these wings are swept, as the shock cone moves inward, the lift vector moves forward as the outer, rearward portions of the wing are generating less lift. This results in powerful pitching moments and their associated required trim changes.
Read more about this topic: Swept Wing
Famous quotes containing the word behavior:
“To a first approximation, the intentional strategy consists of treating the object whose behavior you want to predict as a rational agent with beliefs and desires and other mental states exhibiting what Brentano and others call intentionality.”
—Daniel Clement Dennett (b. 1942)