Function
Tendons have been traditionally considered to simply be a mechanism by which muscles connect to bone, functioning simply to transmit forces. However, over the past two decades, much research focused on the elastic properties of tendons and their ability to function as springs. This allows tendons to passively modulate forces during locomotion, providing additional stability with no active work. It also allows tendons to store and recover energy at high efficiency. For example, during a human stride, the Achilles tendon stretches as the ankle joint dorsiflexes. During the last portion of the stride, as the foot plantar-flexes (pointing the toes down), the stored elastic energy is released. Furthermore, because the tendon stretches, the muscle is able to function with less or even no change in length, allowing the muscle to generate greater force.
The mechanical properties of the tendon are dependent on the collagen fiber diameter and orientation. The collagen fibrils are parallel to each other and closely packed, but show a wave-like appearance due to planar undulations, or crimps, on a scale of several micrometers. In tendons, the collagen I fibres have some flexibility due to the absence of hydroxyproline and proline residues at specific locations in the amino acid sequence, which allows the formation of other conformations such as bends or internal loops in the triple helix and results in the development of crimps. The crimps in the collagen fibrils allow the tendons to have some flexibility as well as a low compressive stiffness. In addition, because the tendon is a multi-stranded structure made up of many partially independent fibrils and fascicles, it does not behave as a single rod, and this property also contributes to its flexibility.
The proteoglycan components of tendons also are important to the mechanical properties. While the collagen fibrils allow tendons to resist tensile stress, the proteoglycans allow them to resist compressive stress. The elongation and the strain of the collagen fibrils alone have been shown to be much lower than the total elongation and strain of the entire tendon under the same amount of stress, demonstrating that the proteoglycan-rich matrix must also undergo deformation, and stiffening of the matrix occurs at high strain rates. These molecules are very hydrophilic, meaning that they can absorb a large amount of water and therefore have a high swelling ratio. Since they are noncovalently bound to the fibrils, they may reversibly associate and disassociate so that the bridges between fibrils can be broken and reformed. This process may be involved in allowing the fibril to elongate and decrease in diameter under tension.
Read more about this topic: Tendon
Famous quotes containing the word function:
“Uses are always much broader than functions, and usually far less contentious. The word function carries overtones of purpose and propriety, of concern with why something was developed rather than with how it has actually been found useful. The function of automobiles is to transport people and objects, but they are used for a variety of other purposesas homes, offices, bedrooms, henhouses, jetties, breakwaters, even offensive weapons.”
—Frank Smith (b. 1928)
“To look backward for a while is to refresh the eye, to restore it, and to render it the more fit for its prime function of looking forward.”
—Margaret Fairless Barber (18691901)
“Nobody seriously questions the principle that it is the function of mass culture to maintain public morale, and certainly nobody in the mass audience objects to having his morale maintained.”
—Robert Warshow (19171955)