There's Plenty of Room at The Bottom - Impact

Impact

K. Eric Drexler later took the Feynman concept of a billion tiny factories and added the idea that they could make more copies of themselves, via computer control instead of control by a human operator, in his 1986 book Engines of Creation: The Coming Era of Nanotechnology.

After Feynman's death, scholars studying the historical development of nanotechnology have concluded that his actual role in catalyzing nanotechnology research was limited, based on recollections from many of the people active in the nascent field in the 1980s and 1990s. Chris Toumey, a cultural anthropologist at the University of South Carolina, has reconstructed the history of the publication and republication of Feynman’s talk, along with the record of citations to “Plenty of Room” in the scientific literature. In Toumey's 2008 article, "Reading Feynman into Nanotechnology", he found 11 versions of the publication of “Plenty of Room", plus two instances of a closely related talk by Feynman, “Infinitesimal Machinery,” which Feynman called “Plenty of Room, Revisited.” Also in Toumey’s references are videotapes of that second talk.

Toumey found that the published versions of Feynman’s talk had a negligible influence in the twenty years after it was first published, as measured by citations in the scientific literature, and not much more influence in the decade after the Scanning Tunneling Microscope was invented in 1981. Subsequently, interest in “Plenty of Room” in the scientific literature greatly increased in the early 1990s. This is probably because the term “nanotechnology” gained serious attention just before that time, following its use by Drexler in his 1986 book, Engines of Creation: The Coming Era of Nanotechnology, which cited Feynman, and in a cover article headlined "Nanotechnology", published later that year in a mass-circulation science-oriented magazine, OMNI. The journal Nanotechnology was launched in 1989; the famous Eigler-Schweizer experiment, precisely manipulating 35 xenon atoms, was published in Nature in April 1990; and Science had a special issue on nanotechnology in November 1991. These and other developments hint that the retroactive rediscovery of Feynman’s “Plenty of Room” gave nanotechnology a packaged history that provided an early date of December 1959, plus a connection to the charisma and genius of Richard Feynman.

Toumey’s analysis also includes comments from distinguished scientists in nanotechnology who say that “Plenty of Room” did not influence their early work, and in fact most of them had not read it until a later date.

Feynman's stature as a Nobel laureate and as an iconic figure in 20th century science surely helped advocates of nanotechnology and provided a valuable intellectual link to the past. More concretely, his stature and concept of atomically precise fabrication played a role in securing funding for nanotechnology research, illustrated by President Clinton January 2000 speech calling for a Federal program:

My budget supports a major new National Nanotechnology Initiative, worth $500 million. Caltech is no stranger to the idea of nanotechnology ­ the ability to manipulate matter at the atomic and molecular level. Over 40 years ago, Caltech's own Richard Feynman asked, "What would happen if we could arrange the atoms one by one the way we want them?"

Read more about this topic:  There's Plenty Of Room At The Bottom

Famous quotes containing the word impact:

    Conquest is the missionary of valour, and the hard impact of military virtues beats meanness out of the world.
    Walter Bagehot (1826–1877)

    Too many existing classrooms for young children have this overriding goal: To get the children ready for first grade. This goal is unworthy. It is hurtful. This goal has had the most distorting impact on five-year-olds. It causes kindergartens to be merely the handmaidens of first grade.... Kindergarten teachers cannot look at their own children and plan for their present needs as five-year-olds.
    James L. Hymes, Jr. (20th century)

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)