Introduction
The plain term 'thermodynamics' refers to macroscopic description of bodies and processes. "Any reference to atomic constitution is foreign to ... thermodynamics". The qualified term 'statistical thermodynamics' refers to descriptions of bodies and processes in terms of the atomic constitution of matter.
Thermodynamics arose from the study of energy transfers that can be strictly resolved into two distinct components, heat and work, specified by macroscopic variables.
Thermodynamic equilibrium is one of the most important concepts for thermodynamics. The temperature of a system in thermodynamic equilibrium is well defined, and is perhaps the most characteristic quantity of thermodynamics. As the systems and processes of interest are taken further from thermodynamic equilibrium, their exact thermodynamical study becomes more difficult. Relatively simple approximate calculations, however, using the variables of equilibrium thermodynamics, are of much practical value in engineering. In many important practical cases, such as heat engines or refrigerators, the systems consist of many subsystems at different temperatures and pressures. In practice, thermodynamic calculations deal effectively with these complicated dynamic systems provided the equilibrium thermodynamic variables are nearly enough well-defined.
Basic for thermodynamics are the concepts of system and surroundings. The surroundings of a thermodynamic system are other thermodynamic systems that can interact with it. An example of a thermodynamic surrounding is a heat bath, which is considered to be held at a prescribed temperature, regardless of the interactions it might have with the system.
There are two fundamental kinds of entity in thermodynamics, states of a system, and processes of a system. This allows two fundamental approaches to thermodynamic reasoning, that in terms of states of a system, and that in terms of cyclic processes of a system.
A thermodynamic system can be defined in terms of its states. In this way, a thermodynamic system is a macroscopic physical object, explicitly specified in terms of macroscopic physical and chemical variables that describe its macroscopic properties. The macroscopic state variables of thermodynamics have been recognized in the course of empirical work in physics and chemistry.
A thermodynamic system can also be defined in terms of the processes it can undergo. Of particular interest are cyclic processes. This was the way of the founders of thermodynamics in the first three quarters of the nineteenth century.
For thermodynamics and statistical thermodynamics to apply to a process in a body, it is necessary that the atomic mechanisms of the process fall into just two classes:
- those so rapid that, in the time frame of the process of interest, the atomic states effectively visit all of their accessible range; and
- those so slow that their progress can be neglected in the time frame of the process of interest.
The rapid atomic mechanisms mediate the macroscopic changes that are of interest for thermodynamics and statistical thermodynamics, because they quickly bring the system near enough to thermodynamic equilibrium. "When intermediate rates are present, thermodynamics and statistical mechanics cannot be applied." Such intermediate rate atomic processes do not bring the system near enough to thermodynamic equilibrium in the time frame of the macroscopic process of interest. This separation of time scales of atomic processes is a theme that recurs throughout the subject.
For example, classical thermodynamics is characterized by its study of materials that have equations of state or characteristic equations. They express relations between macroscopic mechanical variables and temperature that are reached much more rapidly than the progress of any imposed changes in the surroundings, and are in effect variables of state for thermodynamic equilibrium. They express the constitutive peculiarities of the material of the system. A classical material can usually be described by a function that makes pressure dependent on volume and temperature, the resulting pressure being established much more rapidly than any imposed change of volume or temperature.
The present article takes a gradual approach to the subject, starting with a focus on cyclic processes and thermodynamic equilibrium, and then gradually beginning to further consider non-equilibrium systems.
Thermodynamic facts can often be explained by viewing macroscopic objects as assemblies of very many microscopic or atomic objects that obey Hamiltonian dynamics. The microscopic or atomic objects exist in species, the objects of each species being all alike. Because of this likeness, statistical methods can be used to account for the macroscopic properties of the thermodynamic system in terms of the properties of the microscopic species. Such explanation is called statistical thermodynamics; also often it is also referred to by the term 'statistical mechanics', though this term can have a wider meaning, referring to 'microscopic objects', such as economic quantities, that do not obey Hamiltonian dynamics.
Read more about this topic: Thermodynamics
Famous quotes containing the word introduction:
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)
“For better or worse, stepparenting is self-conscious parenting. Youre damned if you do, and damned if you dont.”
—Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)