Laws of Thermodynamics
Thermodynamics states a set of four laws that are valid for all systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following:
- Zeroth law of thermodynamics: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.
This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in thermal equilibrium with each other if spontaneous molecular thermal energy exchanges between them do not lead to a net exchange of energy. This law is tacitly assumed in every measurement of temperature. For two bodies known to be at the same temperature, deciding if they are in thermal equilibrium when put into thermal contact does not require actually bringing them into contact and measuring any changes of their observable properties in time. In traditional statements, the law provides an empirical definition of temperature and justification for the construction of practical thermometers. In contrast to absolute thermodynamic temperatures, empirical temperatures are measured just by the mechanical properties of bodies, such as their volumes, without reliance on the concepts of energy, entropy or the first, second, or third laws of thermodynamics. Empirical temperatures lead to calorimetry for heat transfer in terms of the mechanical properties of bodies, without reliance on mechanical concepts of energy.
The physical content of the zeroth law has long been recognized. For example, Rankine in 1853 defined temperature as follows: "Two portions of matter are said to have equal temperatures when neither tends to communicate heat to the other." Maxwell in 1872 stated a "Law of Equal Temperatures". He also stated: "All Heat is of the same kind." Planck explicitly assumed and stated it in its customary present-day wording in his formulation of the first two laws. By the time the desire arose to number it as a law, the other three had already been assigned numbers, and so it was designated the zeroth law.
- First law of thermodynamics: The increase in internal energy of a closed system is equal to the difference of the heat supplied to the system and the work done by it: ΔU = Q - W
The first law of thermodynamics asserts the existence of a state variable for a system, the internal energy, and tells how it changes in thermodynamic processes. The law allows a given internal energy of a system to be reached by any combination of heat and work. It is important that internal energy is a variable of state of the system (see Thermodynamic state) whereas heat and work are variables that describe processes or changes of the state of systems.
The first law observes that the internal energy of an isolated system obeys the principle of conservation of energy, which states that energy can be transformed (changed from one form to another), but cannot be created or destroyed.
- Second law of thermodynamics: Heat cannot spontaneously flow from a colder location to a hotter location.
The second law of thermodynamics is an expression of the universal principle of dissipation of kinetic and potential energy observable in nature. The second law is an observation of the fact that over time, differences in temperature, pressure, and chemical potential tend to even out in a physical system that is isolated from the outside world. Entropy is a measure of how much this process has progressed. The entropy of an isolated system that is not in equilibrium tends to increase over time, approaching a maximum value at equilibrium.
In classical thermodynamics, the second law is a basic postulate applicable to any system involving heat energy transfer; in statistical thermodynamics, the second law is a consequence of the assumed randomness of molecular chaos. There are many versions of the second law, but they all have the same effect, which is to explain the phenomenon of irreversibility in nature.
- Third law of thermodynamics: As a system approaches absolute zero the entropy of the system approaches a minimum value.
The third law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute reference point for the determination of entropy. The entropy determined relative to this point is the absolute entropy. Alternate definitions are, "the entropy of all systems and of all states of a system is smallest at absolute zero," or equivalently "it is impossible to reach the absolute zero of temperature by any finite number of processes".
Absolute zero is −273.15 °C (degrees Celsius), or −459.67 °F (degrees Fahrenheit) or 0 K (kelvin).
Read more about this topic: Thermodynamics
Famous quotes containing the words laws of and/or laws:
“The Laws of Nature are just, but terrible. There is no weak mercy in them. Cause and consequence are inseparable and inevitable. The elements have no forbearance. The fire burns, the water drowns, the air consumes, the earth buries. And perhaps it would be well for our race if the punishment of crimes against the Laws of Man were as inevitable as the punishment of crimes against the Laws of Naturewere Man as unerring in his judgments as Nature.”
—Henry Wadsworth Longfellow (18071882)
“Our books of science, as they improve in accuracy, are in danger of losing the freshness and vigor and readiness to appreciate the real laws of Nature, which is a marked merit in the ofttimes false theories of the ancients.”
—Henry David Thoreau (18171862)