Thermodynamics - Thermodynamic Equilibrium

Thermodynamic Equilibrium

Equilibrium thermodynamics studies transformations of matter and energy in systems at or near thermodynamic equilibrium. In thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. In thermodynamic equilibrium no macroscopic change is occurring or can be triggered; within the system, every microscopic process is balanced by its opposite; this is called the principle of detailed balance. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial state, subject to specified constraints, to calculate what the equilibrium state of the system is.

In theoretical studies, it is often convenient to consider the simplest kind of thermodynamic system. This is defined variously by different authors. For the present article, the following definition is convenient, as abstracted from the definitions of various authors. A region of material with all intensive properties continuous in space and time is called a phase. A simple system is for the present article defined as one that consists of a single phase of a pure chemical substance, with no interior partitions.

Within a simple isolated thermodynamic system in thermodynamic equilibrium, in the absence of externally imposed force fields, all properties of the material of the system are spatially homogeneous. Much of the basic theory of thermodynamics is concerned with homogeneous systems in thermodynamic equilibrium.

Most systems found in nature or considered in engineering are not in thermodynamic equilibrium, exactly considered. They are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. For example, according to Callen, "in absolute thermodynamic equilibrium all radioactive materials would have decayed completely and nuclear reactions would have transmuted all nuclei to the most stable isotopes. Such processes, which would take cosmic times to complete, generally can be ignored.". Such processes being ignored, many systems in nature are close enough to thermodynamic equilibrium that for many purposes their behaviour can be well approximated by equilibrium calculations.

Read more about this topic:  Thermodynamics

Famous quotes containing the word equilibrium:

    They who feel cannot keep their minds in the equilibrium of a pair of scales: fear and hope have no equiponderant weights.
    Horace Walpole (1717–1797)